61 research outputs found

    Multi-criteria assessment to screen climate smart rice establishment techniques in coastal rice production system of India

    Get PDF
    Introduction: Conventional rice production techniques are less economical and more vulnerable to sustainable utilization of farm resources as well as significantly contributed GHGs to atmosphere. Methods: In order to assess the best rice production system for coastal areas, six rice production techniques were evaluated, including SRI-AWD (system of rice intensification with alternate wetting and drying (AWD)), DSR-CF (direct seeded rice with continuous flooding (CF)), DSR-AWD (direct seeded rice with AWD), TPR-CF (transplanted rice with CF), TPR-AWD (transplanted rice with AWD), and FPR-CF (farmer practice with CF). The performance of these technologies was assessed using indicators such as rice productivity, energy balance, GWP (global warming potential), soil health indicators, and profitability. Finally, using these indicators, a climate smartness index (CSI) was calculated. Results and discussion: Rice grown with SRI-AWD method had 54.8 % higher CSI over FPR-CF, and also give 24.5 to 28.3% higher CSI for DSR and TPR as well. There evaluations based on the climate smartness index can provide cleaner and more sustainable rice production and can be used as guiding principle for policy makers.publishedVersio

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Co-Ta (Cobalt-Tantalum)

    No full text

    Fe-Ti (iron-titanium)

    No full text

    Disordered mesoporous polymer derived N-doped TiO2/Si-O-C-N nanocomposites with nanoscaled heterojunctions towards enhanced adsorption and harnessing of visible light

    No full text
    International audienceThe mesoporous N-doped TiO 2 /Si-O-C-N ceramic nanocomposites has been revealed to be a potential candidate towards visible light photocatalytic degradation of organic dyes. The polymer-derived ceramic route was implemented to prepare uniformly distributed in-situ crystallized N-doped TiO 2 nanocrystals in a mesoporous amorphous siliconoxycarbonitride matrix. This chemical approach assisted by the hard template pathway resulted in a high surface area (186 m 2 /g) nanocomposite exhibiting predominantly mesoporous structure with an average pore size of 11 nm. The two-step process involved pyrolysis of the polyhydridomethyilsiloxane impregnated in CMK3 (hard template) under argon generating SiOC-C composites and functionalizing it with titanium n-tetrabutoxide to be pyrolyzed under ammonia to form the titled nanocomposite. Interestingly, pyrolysis in a reactive ammonia atmosphere resulted in the incorporation of nitrogen in the titania lattice while decomposing the template. The Si-O-C-N support on which N-doped TiO 2 exhibited superior adsorption of organic dye molecules and photocatalytically active in the visible wavelength. The nanoscaled heterojunctions reduced the recombination rate and the presence of superoxide anions/hydroxyl radicals was found to be responsible for the dye degradation

    Al-C-Y (Aluminum-Carbon-Yttrium)

    No full text

    Fe-ti-v (iron-titanium-vanadium)

    No full text

    Cr-Fe-Si (chromium-iron-silicon)

    No full text

    Effect of Short-Range Ordering in High-Entropy Alloys

    No full text
    • …
    corecore