8 research outputs found

    Development of InAsSb-based light-emitting diodes for chemical sensing systems

    Full text link
    Mid-infrared (3--6 {micro}m) LED`s are being developed for use in chemical sensor systems. As rich, InAsSb heterostructures are particularly suited for optical emitters in the mid-infrared region. The authors are investigating both InAsSb-InAs multiple quantum well (MQW) and InAsSb-InAsP strained layer superlattice (SLS) structures for use as the active region for light emitting diodes (LED`s). The addition of phosphorus to the InAs barriers increases the light and heavy hole splitting and hence reduces non-radiative Auger recombination and provides for better electron and hole confinement in the InAsSb quantum well. Low temperature (< 20 K) photoluminescence (PL) emission from MQW structures is observed between 3.2 to 6.0 {micro}m for InAsSb wells between 70 to 100 {angstrom} and antimony mole fractions between 0.04 to 0.18. Room temperature PL has been observed to 6.4 {micro}m in MQW structures. The additional confinement by InAsP barriers results in low temperature PL being observed over a narrower range (3.2 to 5.0 {micro}m) for the similar well thicknesses with antimony mole fractions between 0.10 to 0.24. Room temperature photoluminescence was observed to 5.8 {micro}m in SLS structures. The addition of a p-AlAsSb layer between the n-type active region (MQW or SLS) and a p-GaAsSb contact layer improves electron confinement of the active region and increases output power by a factor of 4. Simple LED emitters have been fabricated which exhibit an average power at room temperature of > 100 {micro}W at 4.0 {micro}m for SLS active regions. These LED`s have been used to detect CO{sub 2} concentrations down to 24 ppm in a first generation, non-cryogenic sensor system. They will report on the development of novel LED device designs that are expected to lead to further improvements in output power

    Progress in the growth of mid-infrared InAsSb emitters by metal-organic chemical vapor deposition

    No full text
    We report on recent progress and improvements in the metal-organic chemical vapor deposition (MOCVD) growth of mid-infrared lasers and using a high speed rotating disk reactor (RDR). The devices contain AlAsSb active regions. These lasers have multi-stage, type I InAsSb/InAsP quantum well active regions. A semi-metal GaAsSb/InAs layer acts as an internal electron source for the multi-stage injection lasers and AlAsSb is an electron confinement layer. These structures are the first MOCVD multi-stage devices. Growth in an RDR was necessary to avoid the previously observed Al memory effects found in conventional horizontal reactors. A single stage, optically pumped laser yielded improved power (greater than 650 mW/facet) at 80K and 3.8um. A multi-stage 3.8-3.9um laser structure operated up to T=170K. At 80K, peak power greater than 100mW and a high slope- efficiency were observed in gain guided lasers
    corecore