6 research outputs found

    Towards an Iterative Algorithm for the Optimal Boundary Coverage of a 3D Environment

    Get PDF
    This paper presents a new optimal algorithm for locating a set of sensors in 3D able to see the boundaries of a polyhedral environment. Our approach is iterative and is based on a lower bound on the sensors' number and on a restriction of the original problem requiring each face to be observed in its entirety by at least one sensor. The lower bound allows evaluating the quality of the solution obtained at each step, and halting the algorithm if the solution is satisfactory. The algorithm asymptotically converges to the optimal solution of the unrestricted problem if the faces are subdivided into smaller part

    Towards Minimal Barcodes

    Get PDF
    In the setting of persistent homology computation, a useful tool is the persistence barcode representation in which pairs of birth and death times of homology classes are encoded in the form of intervals. Starting from a polyhedral complex K (an object subdivided into cells which are polytopes) and an initial order of the set of vertices, we are concerned with the general problem of searching for filters (an order of the rest of the cells) that provide a minimal barcode representation in the sense of having minimal number of “k-significant” intervals, which correspond to homology classes with life-times longer than a fixed number k. As a first step, in this paper we provide an algorithm for computing such a filter for k = 1 on the Hasse diagram of the poset of faces of K

    Cloud4SOA: A Semantic-Interoperability PaaS Solution for Multi-cloud Platform Management and Portability

    No full text
    Cloud Platform as a Service (PaaS) is a novel, rapidly growing segment in the Cloud computing market. However, the diversity and heterogeneity of today's existing PaaS offerings raises several interoperability challenges. This introduces adoption barriers due to the lock-in issues that prevent the portability of data and applications from one PaaS to another, "locking" software developers to the first provider they use. This paper introduces the Cloud4SOA solution, a scalable approach to semantically interconnect heterogeneous PaaS offerings across different Cloud providers that share the same technology. The design of the Cloud4SOA solution, extensively presented in this work, comprises of a set of interlinked collaborating software components and models to provide developers and platform providers with a number of core capabilities: matchmaking, management, monitoring and migration of applications. The paper concludes with the presentation of a proof-of-concept implem entation of the Cloud4SOA system based on real-life business scenarios
    corecore