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Abstract. In the setting of persistent homology computation, a useful
tool is the persistence barcode representation in which pairs of birth and
death times of homology classes are encoded in the form of intervals.
Starting from a polyhedral complex K (an object subdivided into cells
which are polytopes) and an initial order of the set of vertices, we are
concerned with the general problem of searching for filters (an order of
the rest of the cells) that provide a minimal barcode representation in the
sense of having minimal number of “k-significant” intervals, which cor-
respond to homology classes with life-times longer than a fixed number
k. As a first step, in this paper we provide an algorithm for computing
such a filter for k = 1 on the Hasse diagram of the poset of faces of K.

Keywords: Persistent homology, persistence barcodes, graphs,
polyhedral complexes.

1 Introduction

The persistence barcode representation, which encodes pairs of cells meaning
birth and death of homology classes in persistent homology computation, de-
pends on the filter considered for such computation. Although, as we will see
later, the total number of intervals remains invariant, the lengths of these inter-
vals depend on the selected filter. Since, non-significant intervals (i.e. intervals
with short length) do not imply relevant homological information, we are inter-
ested in providing good properties to be satisfied by the selected filter, so that
the number of non-significant intervals in the corresponding persistence barcode
is maximized (i.e. the number of significant intervals is minimized). Motivated
by practical applications of persistent homology computation, our starting point
is a given polyhedral complex and an initial order of the set of vertices. From an
information-theoretic viewpoint, and if we interpret the number of ”significant
intervals” as the coding length of a complex, our goal is to then select the most
”parsimonious” representation (also by Occam’s razor principle). As is also well
known, the coding length is also intimately related to the notion of entropy (i.e.
a topological entropy of a complex in our case). While ideally, one would want to
balance this minimization with a penalty term of the number of ”insignificant”
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intervals. This development is under way, and requires the statistical distribu-
tion of the long intervals. Our aim is to look for a way to insert the rest of the
cells along the filter in order to minimize the number of significant intervals.

The remainder of this paper is organized as follows. Section 2 covers the rele-
vant background material. In Section 3, we prove that the number of intervals in
a persistence barcode does not depend on the selected filter, we give the defini-
tion of minimal barcode and show two practical examples in which computation
of minimal barcodes can be useful. In Section 4, an algorithm for computing
on the Hasse diagram of the poset of faces of the polyhedral complex, a filter
that produces a minimal barcode is given. Section 5 is devoted to relations be-
tween minimal barcodes and the optimal discrete Morse function. Conclusions
and future work are presented in Section 6.

2 Background

This paper is developed in a combinatorial algebraic topology setting, where the
objects of interest are (geometric) polyhedral complexes [14]. A polyhedral com-
plex K is a collection of convex polytopes such that: (1) every face of a polytope
in K is itself a polytope in K; (2) the intersection of any two polytopes in K is a
face of each of them. The set of cells of dim. i (or i-cells), σi (superscript specifies
its dimension), will be denoted by Ki, and the number of cells in the set of cells
S by |S|. An n-dim. polyhedral complex satisfies that Kn �= ∅ and Kn+1 = ∅,
where n > 0. Particular cases arise when the polytopes belong to a specified set
of polyhedra, such as simplicial complexes (vertices, edges, triangles, tetrahedra,
up to dim. 3) or cubical complexes (vertices, edges, squares, cubes, up to dim.
3). In general, we will always refer to a finite polyhedral complex K (i.e. with
m cells, m being a finite number). Several polytopes associated with combina-
torial optimization problems have surprisingly small extended formulations (see
[3,20,10]). It may not be very surprising that no polynomial size extended for-
mulations of polytopes associated with NP-hard optimization problems like the
traveling salesman polytope are known.

Homology theory uses algebraic groups to encode the topological structure
of K. Finite formal sums of elements of Ki (called i-chains) define an additive
abelian group structure on Ki. A proper face of σ ∈ Ki is a face of σ of dim.
i− 1. The boundary of σ, denoted by ∂(σ) is the formal sum (with coefficients in
Z/Z2) of the proper faces of σ. The boundary operator is extended to all chains
ofK by linearity. An i-chain a is an i-cycle if ∂(a) = 0; it is an i-boundary if there
is an (i + 1)-chain b such that ∂(b) = a. Two i-cycles a and a′ are homologous
if a + a′ is an i-boundary. The quotient of i-cycles over i-boundaries is the ith

homology group of K. The i-Betti number that is the rank of the ith homology
group of K will be denoted by βi. Then, the basic topological structure of K
is quantified by the number of independent cycles in each homology group. See
[17,12].

Persistent homology [4,21] studies homology classes and their lifetimes (per-
sistence). While homology characterizes an object, persistent homology charac-
terizes a sequence of growing object-instances, i.e. an object together with an
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Fig. 1. An example of a 2-dim. simplicial complex and three persistence barcodes
corresponding to different filters (fixed by the order in the set of cells given along
the horizontal axis of the representations). Bottom: two minimal barcodes. Right: two
barcodes with same order of the 0-cells.

order of the cells {σ1, . . . , σm} (where σs < σt iff s < t) called a filter, such that
if σi is a proper faces of σj then i < j.

Given a filter of K, the algorithm for computing persistent homology that
appears in [4], marks an i-cell σt as positive (birth) if it belongs to an i-cycle in
Kt (σt creates a new homology class at time t) and negative (death) otherwise
(σt destroys the homology class created at some time s for 0 ≤ s < t).

Given a filter {σ1, . . . , σm}, a persistence barcode [2] is a graphical representa-
tion of pairs of birth and death times as a collection of horizontal line segments
(intervals) in a plane. If a cell σs creates a homology class at time s, and it
is destroyed at time t, 0 ≤ s < t ≤ m then the interval [s, t) is added to the
corresponding persistence barcode (see [2]); If a cell σs, 0 ≤ s ≤ m creates a
homology class at time s and it survives along the process, then the interval
[s,∞) is added to the persistence barcode.

3 Minimal Barcodes

In this section, a formal definition of minimal barcode is presented along with
two practical examples for which a computation of minimal barcodes can be
useful.

For a fixed i, we refer to i-barcode the set of intervals of a given persistence
barcode corresponding to the pairs of positive i-cells and negative (i + 1)-cells
of K. The following result holds.

Lemma 1. The number of intervals in an i-barcode, 0 ≤ i ≤ n, is constant,
independently of the selected filter.

Proof. First, the number of intervals of infinite length in the i-barcode is in-
dependent on the filter since it coincides with βi. Second, each i-cell σi

t in the
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given filter, 0 ≤ t ≤ m, is marked as positive or negative. No cell can remain
unmarked after the whole process. This is easy to prove using AT-models [6]: σi

t

is marked as positive if f i−1∂(σi
t) = 0 and negative otherwise (see [7]). Third, let

Bi (resp. Di) be the number of positive (resp. negative) i-cells. Then, we have
that |K0| = B0, |Kn| = Bn +Dn, βn = Bn, and, for 0 < i < n, |Ki| = Bi +Di

and βi = Bi − Di+1. Therefore, we obtain that D0 = 0, B0 = |K0|, and for
0 < i ≤ n, Di = |Ki−1| − βi−1 −Di−1 and Bi = |Ki| −Di. We conclude that,
for 0 ≤ i ≤ n, nor Bi neither Di (which coincides with the number of finite
intervals in the (i − 1)-barcode) depend on the selected filter. ��
A general idea in the study of topological persistence is that significant topo-
logical attributes must have long life-times, and topological features with short
life-times are considered to be “noise”. Following this idea, in the definition be-
low, k-significant intervals correspond to homology classes whose life-times are
longer than a fixed number k.

Definition 1. Fixed k > 0, an interval [s, t) is k-significant if k < t− s.

Our general aim is to find, under some constraints, depending on the nature of
the application, filters that minimize the number of long-life homological classes
which are associated with significant intervals.

Nevertheless, filters are, in many cases, totally determined. Examples of this
is when objects are presented as point cloud data and Rip or Cech complexes
are constructed to fill in the higher-dimensional simplices of the proximity graph
whose edges are determined by proximity, i.e. vertices within some specified dis-
tance ε (see [8]). But, in other cases, only order of 0-cells are given. For example,
when a continuous function (e.g. a height function or barycentric distance) is
provided and the 0-cells of K are ordered by the function values at them.

We briefly present here two particular examples of this last case:

1. Application of persistent homology to the evaluation of a 3D reconstruction
process (carving voxel) of human models from images captured from a set of
cameras placed around the subject. In fact, we refer to the visual hull that is
constructed from images of cameras from different viewpoints. This problem
can be seen as a view planning problem (see [19], a survey of computer vision
sensor planning, [18], a more recent survey of view planning for 3-D vision).
In our case, [9], starting from a compact block of voxels, each time a camera
is added, a set of voxels are deleted (carved) from the 3D reconstruction,
so the sequence of 3D reconstructions along decreasing number of cameras
gives place to a filter of the corresponding cubical complexes. This allows
to analyze the topological evolution of the reconstruction process. Only k-
significant intervals are considered, where k is the distance (in number of
cells) from one reconstruction to the next one. An initial partial order is hence
considered in the set of vertices that have to be added in the computation
along the process. See Fig. 2.

2. In [11] an image/video application using topological invariants for human
gait recognition is shown. Using a background subtraction approach, a stack
of silhouettes is extracted and glued through their gravity centers, forming
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Fig. 2. Examples of 3D reconstructions using a) 4 cameras and b) 10 cameras. Rep-
resentative cycles of homology are highlighted in both cases. c) Persistence barcode
associated to the whole sequence of 3D reconstructions with increasing number of
cameras (from 1 to 50) is shown.

a 3D digital image I. From this 3D representation, the boundary simplicial
complex ∂K(I) is obtained. Four filters are computed preserving four dif-
ferent given orders of the vertices of ∂K(I) depending on four directions of
view. The persistence barcodes associated with the previous filters are then
computed (see Fig. 3). These filters capture relations among the parts of the
human body when walking. Only intervals with long life-times are consid-
ered. Finally, a topological gait signature is extracted from the persistence
barcodes according to the filters.

From now on, suppose a bijective function h : K0 → {1, 2, ..., |K0|} (i.e. an order
of the 0-cells of K) is given. Let us denote by F the set of filters F of K such
that for any two 0-cells σ0

s , σ
0
t ∈ F , s < t, it is satisfied that h(σ0

s ) < h(σ0
t ).

Definition 2. A persistence barcode associated with a filter F ∈ F is minimal
if the persistence barcode associated with any other filter in F contains greater
or equal number of significant intervals.

Observe that a filter F ∈ F with a minimal barcode always exists and might not
be unique (see Fig. 1 as examples of minimal barcodes).

4 Hasse Diagrams for the Poset of Faces and Minimal
Barcodes

Our aim in this section is to construct a filter F ∈ F with a minimal barcode.
Consider the poset given by the set of cells of K together with the partial

order induced by the coface relation, that is, τ < σ if τ is a face of σ. The Hasse
diagram H of this poset (poset of faces) is the directed graph whose vertex set
is the set of cells and whose arcs are the covering pairs (τ, σ) in the poset, that
is, τ < σ and there is no ρ such that τ < ρ < σ (it is said that σ covers τ).
We draw the Hasse diagram in the plane in such a way that, if τ is a face of
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Fig. 3. Left: A simplicial complex ∂K(I) corresponding to a gait, vertical direction
of view (defined by the segment [a, b]) and the gravity center GC. Right: persistence
barcode according to the vertical direction of view, corresponding to a filter of the
subcomplex K[a,GC] (from a to GC) of ∂K(I).

σ (σ covers τ), then the point representing σ is in a lower level than the point
representing τ , corresponding the level with the dimension of the cells. Then
no arrows are required in the drawing, since the directions of the arrows are
implicit. V i denotes the set of points vi at level i, for 0 ≤ i ≤ n.

In Alg. 1, a matching (or independent set of edges) M in H is provided,
together with a vertex-labeling of H (see Fig. 4). The resulting labeling and
matching will produce a filter of K.

A weight wi(vi) for each vi ∈ V i, 1 ≤ i ≤ n, will also be assigned along
the process as follows. First, �0 : V 0 → {1, . . . , |K0|} is defined for each vertex
v0 ∈ V 0 by �0(v0) = h(σ0), where σ0 is the 0-cell represented by the point v0.
Second, for i = 1 to i = n, the weight of each point vi ∈ V i will be

wi(vi) = max{�i−1(vi−1) such that vi−1 is adjacent to vi}.
Observe that more than one point in V i can have the same weight. Then, a
matching between vertices of V i−1 and vertices of V i is given satisfying that if
vi−1 is matched with vi then �(vi−1) = w(vi). Observe that fixing a weight w,
only one point of the set W = {vi ∈ V i such that wi(vi) = w} is matched with
some point in V i−1. At the end of the process, a bijective function �i : V i →
{1, . . . , |Ki|}, 1 ≤ i ≤ n, is obtained, satisfying:

P1 if wi(ui) < wi(vi), then �i(ui) < �i(vi) for any ui, vi ∈ V i;
P2 if wi(vi) = wi(ui) and (vi−1, vi) ∈ M for some vi−1 ∈ V i−1, vi, ui ∈ V i

then �i(vi) < �i(ui) (any point in V i matched with a point in V i−1 always
precedes the other points in V i with same weight);

P3 if wi(vi) = wi(ui), vi, ui ∈ V i and (vi, vi+1) ∈ M for some vi+1 ∈ V i+1 then
�i(ui) < �i(vi) (points in V i matched with points in V i+1 go after other
points in V i not matched with any point in V i+1, with same weight);

P4 Points in V i with same weight have consecutive labels.
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Fig. 4. a) An example of a 2-dim. simplicial complex; b) 1st step (i = 1) of Alg. 1
(red edges represent matchings); c) 2nd step (i = 1) of Alg. 1; d) subgraph Hv3 and
an augmenting path (blue and red edges); e) a maximal matching for Hv3 (red edges);
f) final matching M on H .

P1, P2 and P3 will guarantee that the corresponding filter is correct in the
sense that a cell is not added to the filter until all its faces are added.

Algorithm 1. Computing a vertex-labeling and a matching M of H.

a. Labeling �0 : V 0 → {1, 2, . . . , |K0|} is given by the corresponding initial order
of the 0-cells of K.

b. Assign the weight w1(v1) to each point v1 ∈ V 1.
c. M = {(v0, v1) satisfying that v0 ∈ V 0, v1 ∈ V 1, �0(v0) = w1(v1)}. If there

are more than one point in V 1 with the same weight, select one of them to
match.

d. Construct �1 : V 1 → {1, 2, . . . , |K1|} satisfying P1, P2, P4.

Repeat the following process for i = 1 to i = n− 1:

1. Assign the weight wi+1(vi+1) to each point vi+1 ∈ V i+1.
2. Update matching:

M := M ∪ {(vi, vi+1) such that vi ∈ M̄ i, vi+1 ∈ V i+1, �i(vi) = wi+1(vi+1)},
where M̄ i is the set of points of V i not-matched with any point of V i−1. If
there are more than one point in V i+1 with the same weight, select one of
them to match.

3. For each vi−1 ∈ V i−1, consider the subgraph Hvi−1 whose set of vertices is:
A ∪B ∪ C where A = {vi−1}, B = {vi ∈ V i such that wi(vi) = �i−1(vi−1)}
and C = {vi+1 ∈ V i+1 such that wi+1(vi+1) = �i(vi) for some point vi ∈ V i

satisfying that wi(vi) = �i−1(vi−1)}.
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3.1. If the matching M |H
vi−1

(i.e., M restricted to Hvi−1) is not maximal in
Hvi−1 , find a maximal one, Mvi−1 , using the augmenting path algorithm,
with the restriction that each augmented path always begins in a not-
matched vertex vi ∈ Hvi−1 ∩ V i. This last restriction will guarantee that
if vi−1 was not matched in Hvi−1 , it remains unmatched in Hvi−1 .

3.2. Remove from M the pairs in M |Hvi−1 and add to M the pairs in Mvi−1 .

4. Update �i : V i → {1, 2, . . . , |Ki|} satisfying P1, P2, P3, P4.
5. For each point vi+1 ∈ V i+1, update weight wi+1(vi+1) if needed.
6. Construct �i+1 : V i+1 → {1, 2, . . . , |Ki+1|} satisfying P1, P2, P4.

Observe that a labeling �i satisfying P1, P2, P3, P4 (Step 4 in the description
of the algorithm above) can always be obtained. First, before updating, labeling
�i satisfied P1, P2, P4 (Step 6). Second, to satisfy P3, we just interchange the
labels between points in V i with same weight, then the updated labeling �i will
also P3 and also P1, P2 and P4.

Since the points vi ∈ V i correspond to i-cells in K, 0 ≤ i ≤ n, an order of
all the points in the planar representation of the Hasse diagram of K provide a
filter of K. Such an order O can be constructed as follows:

Algorithm 2. Computing a filter F of K form a vertex-labeling and matching
M of H obtained in Alg. 1.

1. Initially O is the ordered set of all the points in V 0 ordered by their labels.
2. For i = 1 to i = n do:

(a) For every point vi ∈ V i matched with a point vi−1 ∈ V i−1, insert vi

in O just after vi−1 (this way, the i-cell associated with the point vi is
added to the filter F just after its last face is added).

(b) Add the rest of the points in V i at the end of O ordered by their labels.

Remark 1. The number of non-significant intervals in the filter F given by the
order O coincides with the number of pairs in M .

Proposition 1. Fixing a filter F of K up to dimension i − 1 (i.e., a filter of
⋃i−1

j=0 K
j), Step 3 in the description of Alg. 1 produces a minimal i-barcode.

Proof. Observe that fixing a labeling and matching up to level i − 1, Setp 3 of
Alg. 1 produces a maximal matching between points at level i − 1, i and i + 1,
with the condition that points in vi−1 already matched with points in V i−2 are
not matched with any point in V i. ��
Implementation of the above algorithms is an ongoing work. Based on the pre-
vious proposition and some preliminary computations our conjecture is that the
procedure explained above produces a filter with a minimal barcode.

5 Relations between Minimal Barcodes and Optimal
Discrete Morse Function

Discrete Morse functions on cell complexes were defined by Forman in [5]. A
function, f : K → R is a discrete Morse function if for every σ ∈ K, f takes a
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value less than or equal to f(σ) on at most one coface of σ and takes a value
greater than or equal to f(σ) on at most one face of σ. A cell σ is critical if
all cofaces take strictly greater values and all faces are strictly lower. A discrete
vector field V is a collection of pairs (σi < σi+1) of cells in K such that each
cell is in at most one pair of V . A discrete Morse function defines a discrete
vector field by pairing σi < σi+1 whenever f(σi) ≥ f(σi+1). The critical cells
are precisely those that do not appear in any pair. Discrete vector fields that arise
from Morse functions are called gradient vector fields. A V -path is a sequence of
cells: σi

0, σ
i+1
0 , σi

1, σ
i+1
1 , . . . σi

r−1, σ
i+1
r−1, σ

i
r where (σi

t, σ
i+1
t ) ∈ V , σi+1

t > σi
t+1 and

σi
t �= σi

t+1. A V -path is a non-trivial closed V -path if σi
r = σi

0 for r ≥ 1. Forman
shows that a discrete vector field is the gradient vector field of a discrete Morse
function if and only if there are no non-trivial closed V -paths.

There have been several works in the literature dealing with the problem
of obtaining optimal discrete Morse functions (the function has the minimum
possible number of critical cells in each dimension) and perfect Morse function
(the number of critical i-cells coincides with the ith Betti number of the complex).
In [13] it is shown that computing optimal Morse matchings in the setting of
simplicial complexes is NP-hard. In [15], a linear algorithm to define optimal
discrete Morse functions on discrete 2-manifolds is introduced. In [1] the authors
establish conditions under which a 2-dim. simplicial complex admits a perfect
discrete Morse function and conversely.

It is clear that our work presents similarities with the problem of the compu-
tation of optimal discrete Morse functions. But in our case, a fixed ordering on
the 0-cells are given. Then, optimal discrete Morse matchings could not produce
minimal barcodes (indeed, could not produce valid filters) and viceversa, the
set of non-significant intervals in a minimal barcode could not be an optimal
discrete Morse matching.

6 Conclusions and Future Work

In this paper, starting from a polyhedral complex K and an initial order of
the set of vertices, we provide an algorithm for computing a filter on the Hasse
diagram of the poset of faces of K such that the associated persistence barcode
representation has a minimal number of significant intervals which correspond
to homology classes with life-times longer than 1.

An idea to adapt the presented algorithm to compute minimal barcodes to the
case in which significant intervals are intervals with length greater than k, for
k > 1, could be: First, to compute a minimal barcode using the above algorithms.
Observe that, in this case, the matched points are successively inserted in the
filter whereas the non-matched points are successively added at the end. Second,
modify the Hasse diagram pretending collapses of the pairs of cells associated
with the non-significant intervals and apply the above algorithm again. Observe
that in this step we only reorder the cells that have been added to the end.
Third, repeat the process k − 1 times.
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