14 research outputs found

    Evaluating the risks of pasture and land degradation in native pastures in Queensland

    Get PDF
    The objective of the project was to develop an approach to quantify the risks of land nd pasture degradation. This objective was achieved by developing an operational model of the condition of native pastures in Queensland. The results of the project showed that: 1) historical and current pasture data can be used with models to simulate grazing lands in near real-time; 2) spatial models of production can be developed and validated with existing spatial data and monitoring systems; 3) data from graziers indicate that safe utilisation rates are 15-25% of average pasture growth; 4) relative risks of land and pasture can be quantified from simulations using actual numbers compared to safe stocking rates; and 5) case studies using the pasture growth model and models of grazing feedback on pasture and land degradation to evaluate the economic consequences of stocking rate strategies have been used in other projects (e.g. DroughtPlan: McKeon et al. 1996, Stafford Smith et al. 1996)

    Objective `Safe' Grazing Capacities for South-West Queensland Australia: Development of a Model for Individual Properties

    Get PDF
    Few tools are available to assist graziers, land administrators and financiers in making objective grazing capacity decisions on Australian rangelands, despite existing knowledge regarding stocking rate theory and the impact of stocking rates on land condition. To address this issue a model for objectively estimating 'safe' grazing capacities on individual grazing properties in south-west Queensland was developed. The method is based on 'safe' levels of utilisation (15%-20%) by domestic livestock of average annual forage grown for each land system on a property. Average annual forage grown (kglha) was calculated as the product of the rainfall use efficiency (kglhdmm) and average annual rainfall (mm) for a land system. This estimate included the impact of tree and shrub cover on forage production. The 'safe' levels of forage utilisation for south- west Queensland pastures were derived from the combined experience of (1) re-analysis of the results of grazing trials, (2) reaching a consensus on local knowledge and (3) examination of existing grazing practice on 'benchmark' grazing properties. We recognise the problems in defining, determining and using grazing capacity values, but consider that the model offers decision makers a tool that can be used to assess the grazing capacity of individual properties

    Climate Change in Queensland's Grazing Lands: II. An Assessment of the Impact on Animal Production From Native Pastures

    Get PDF
    The 160 million ha of grazing land in Queensland support approximately 10 million beef equivalents (9.8 million cattle and 10.7 million sheep) with treed and cleared native pastures as the major forage source. The complexity of these biophysical systems and their interaction with pasture and stock management, economic and social forces limits our ability to easily calculate the impact of climate change scenarios. We report the application of a systems approach in simulating the flow of plant dry matter and utilisation of forage by animals. Our review of available models highlighted the lack of suitable mechanistic models and the potential role of simple empirical relationships of utilisation and animal production derived from climatic and soil indices. Plausible climate change scenarios were evaluated by using a factorial of rainfall (f 10%) * 3260C temperature increase * doubling CO, in sensitivity studies at property, regional and State scales. Simulation of beef cattle liveweight gain at three locations in the Queensland black speargrass zone showed that a *lo% change in rainfall was magnified to be a f 15% change in animal production (liveweight gain per ha) depending on location, temperature and CO, change. Models of 'safe' carrying capacity were developed from property data and expert opinion. Climate change impacts on 'safe' carrying capacity varied considerably across the State depending on whether moisture, temperature or nutrients were the limiting factors. Without the effect of doubling CO,, warmer temperatures and +lo% changes in rainfall resulted in -35 to +70% changes in 'safe' carrying capacity depending on location. With the effect of doubling CO, included, the changes in 'safe' carrying capacity ranged from -12 to +115% across scenarios and locations. When aggregated to a whole-of-State carrying capacity, the combined effects of warmer temperature, doubling CO, and +lo% changes in rainfall resulted in 'safe' carrying capacity changes of +3 to +45% depending on rainfall scenario and location. A major finding of the sensitivity study was the potential importance of doubling CO, in mitigating or amplifying the effects of warmer temperatures and changes in rainfall. Field studies on the impact of CO, are therefore a high research priority. Keywords: climate change, Queensland, simulation, rangelands, beef production, cattle, carrying capacity, CO,, utilisatio

    Casimir Effect on the Worldline

    Full text link
    We develop a method to compute the Casimir effect for arbitrary geometries. The method is based on the string-inspired worldline approach to quantum field theory and its numerical realization with Monte-Carlo techniques. Concentrating on Casimir forces between rigid bodies induced by a fluctuating scalar field, we test our method with the parallel-plate configuration. For the experimentally relevant sphere-plate configuration, we study curvature effects quantitatively and perform a comparison with the ``proximity force approximation'', which is the standard approximation technique. Sizable curvature effects are found for a distance-to-curvature-radius ratio of a/R >~ 0.02. Our method is embedded in renormalizable quantum field theory with a controlled treatment of the UV divergencies. As a technical by-product, we develop various efficient algorithms for generating closed-loop ensembles with Gaussian distribution.Comment: 27 pages, 10 figures, Sect. 2.1 more self-contained, improved data for Fig. 6, minor corrections, new Refs, version to be published in JHE

    Neutrino Propagation in a Strongly Magnetized Medium

    Full text link
    We derive general expressions at the one-loop level for the coefficients of the covariant structure of the neutrino self-energy in the presence of a constant magnetic field. The neutrino energy spectrum and index of refraction are obtained for neutral and charged media in the strong-field limit (MWBme,T,μ,pM_{W}\gg \sqrt{B}\gg m_{e},T,\mu ,| \mathbf{p}| ) using the lowest Landau level approximation. The results found within the lowest Landau level approximation are numerically validated, summing in all Landau levels, for strong BT2B\gg T^{2} and weakly-strong BT2B \gtrsim T^{2} fields. The neutrino energy in leading order of the Fermi coupling constant is expressed as the sum of three terms: a kinetic-energy term, a term of interaction between the magnetic field and an induced neutrino magnetic moment, and a rest-energy term. The leading radiative correction to the kinetic-energy term depends linearly on the magnetic field strength and is independent of the chemical potential. The other two terms are only present in a charged medium. For strong and weakly-strong fields, it is found that the field-dependent correction to the neutrino energy in a neutral medium is much larger than the thermal one. Possible applications to cosmology and astrophysics are considered.Comment: 23 pages, 4 figures. Corrected misprints in reference

    Evaluating the risks of pasture and land degradation in native pastures in Queensland

    Get PDF
    The objective of the project was to develop an approach to quantify the risks of land nd pasture degradation. This objective was achieved by developing an operational model of the condition of native pastures in Queensland. The results of the project showed that: 1) historical and current pasture data can be used with models to simulate grazing lands in near real-time; 2) spatial models of production can be developed and validated with existing spatial data and monitoring systems; 3) data from graziers indicate that safe utilisation rates are 15-25% of average pasture growth; 4) relative risks of land and pasture can be quantified from simulations using actual numbers compared to safe stocking rates; and 5) case studies using the pasture growth model and models of grazing feedback on pasture and land degradation to evaluate the economic consequences of stocking rate strategies have been used in other projects (e.g. DroughtPlan: McKeon et al. 1996, Stafford Smith et al. 1996)
    corecore