865 research outputs found
Experimental demonstration of coupled optical springs
Optical rigidity will play an important role in improving the sensitivity of future generations of gravitational wave (GW) interferometers, which employ high laser power in order to reach and exceed the standard quantum limit. Several experiments have demonstrated the combined effect of two optical springs on a single system for very low-weight mirror masses or membranes. In this paper we investigate the complex interactions between multiple optical springs and the surrounding apparatus in a system of comparable dynamics to a large-scale GW detector. Using three 100 g mirrors to form a coupled cavity system capable of sustaining two or more optical springs, we demonstrate a number of different regimes of opto-mechanical rigidity and measurement techniques. Our measurements reveal couplings between each optical spring and the control loops that can affect both the achievable increase in sensitivity and the stability of the system. Hence this work establishes a better understanding of the realisation of these techniques and paves the way to their application in future GW observatories, such as upgrades to Advanced LIGO
The relationships between bone mineral density in the spine, hip, distal femur and proximal tibia and medial minimum joint space width in the knees of healthy females
SummaryObjectiveTo investigate the relationships between bone mineral density (BMD) in the hip, spine, distal femur and proximal tibia and minimum joint space width (mJSW) in the knees of healthy women.MethodsWomen 22–68 years old without a history of knee pain, bone or joint disease or injury underwent a single, fixed-flexion knee X-ray. Radiographs were graded according to the Kellgren–Lawrence scale and analyzed for mJSW using a computer algorithm. Dual X-ray absorptiometry scans of the spine, hip, distal femur and proximal tibia were also acquired for each participant. Femur and tibia scans were acquired and analyzed using a modified version of the lumbar spine software.ResultsForty-five females, mean [standard deviation (SD)] age and body mass index (BMI) of 40.1 (13.9) years and 24.6 (4.5)kg/m2, respectively, participated. The mean (SD) mJSW was 4.64 (0.68)mm. Linear regression analyses controlling for age and BMI revealed that BMD in the femoral trochanter and the central two regions of the tibia (T2 and T3) was significantly related to mJSW in the knee. A backwards regression analysis performed to determine which region of interest is most significantly related to mJSW revealed that femoral trochanter BMD (β-value=0.416) is the most significant.ConclusionsIn contrast to the suggestion that BMD is negatively correlated with mJSW in the knees of osteoarthritic individuals, these results suggest that increasing BMD in the femoral trochanter and tibia is significantly associated with increasing mJSW in healthy females. Further investigation of this relationship is warranted
Quantum phase transition in a two-channel-Kondo quantum dot device
We develop a theory of electron transport in a double quantum dot device
recently proposed for the observation of the two-channel Kondo effect. Our
theory provides a strategy for tuning the device to the non-Fermi-liquid fixed
point, which is a quantum critical point in the space of device parameters. We
explore the corresponding quantum phase transition, and make explicit
predictions for behavior of the differential conductance in the vicinity of the
quantum critical point
Multiple field inflation
Inflation offers a simple model for very early evolution of our Universe and
the origin of primordial perturbations on large scales. Over the last 25 years
we have become familiar with the predictions of single-field models, but
inflation with more than one light scalar field can alter preconceptions about
the inflationary dynamics and our predictions for the primordial perturbations.
I will discuss how future observational data could distinguish between
inflation driven by one field, or many fields. As an example, I briefly review
the curvaton as an alternative to the inflaton scenario for the origin of
structure.Comment: 27 pages, no figures. To appear in proceedings of 22nd IAP
Colloquium, Inflation +25, Paris, June 200
Kondo effect in multielectron quantum dots at high magnetic fields
We present a general description of low temperature transport through a
quantum dot with any number of electrons at filling factor . We
provide a general description of a novel Kondo effect which is turned on by
application of an appropriate magnetic field. The spin-flip scattering of
carriers by the quantum dot only involves two states of the scatterer which may
have a large spin. This process is described by spin-flip Hubbard operators,
which change the angular momentum, leading to a Kondo Hamiltonian. We obtain
antiferromagnetic exchange couplings depending on tunneling amplitudes and
correlation effects. Since Kondo temperature has an exponential dependence on
exchange couplings, quantitative variations of the parameters in different
regimes have important experimental consequences. In particular, we discuss the
{\it chess board} aspect of the experimental conductance when represented in a
grey scale as a function of both the magnetic field and the gate potential
affecting the quantum dot
Specific heat study of single crystalline Pr Ca MnO in presence of a magnetic field
We present the results of a study of specific heat on a single crystal of
PrCaMnO performed over a temperature range 3K-300K in
presence of 0 and 8T magnetic fields. An estimate of the entropy and latent
heat in a magnetic field at the first order charge ordering (CO) transition is
presented. The total entropy change at the CO transition which is 1.8
J/mol K at 0T, decreases to 1.5 J/mol K in presence of 8T magnetic
field. Our measurements enable us to estimate the latent heat
235 J/mol involved in the CO transition. Since the entropy of the
ferromagnetic metallic (FMM) state is comparable to that of the charge-ordered
insulating (COI) state, a subtle change in entropy stabilises either of these
two states. Our low temperature specific heat measurements reveal that the
linear term is absent in 0T and surprisingly not seen even in the metallic FMM
state.Comment: 8 pages (in RevTEX format), 12 figures (in postscript format)
Submitted to Phys. Rev.
Singlet-triplet transition in a lateral quantum dot
We study transport through a lateral quantum dot in the vicinity of the
singlet-triplet transition in its ground state. This transition, being sharp in
an isolated dot, is broadened to a crossover by the exchange interaction of the
dot electrons with the conduction electrons in the leads. For a generic set of
system's parameters, the linear conductance has a maximum in the crossover
region. At zero temperature and magnetic field, the maximum is the strongest.
It becomes less pronounced at finite Zeeman splitting, which leads to an
increase of the background conductance and a decrease of the conductance in the
maximum
Interference and interaction effects in multi-level quantum dots
Using renormalization group techniques, we study spectral and transport
properties of a spinless interacting quantum dot consisting of two levels
coupled to metallic reservoirs. For strong Coulomb repulsion and an applied
Aharonov-Bohm phase , we find a large direct tunnel splitting
between the levels of
the order of the level broadening . As a consequence we discover a
many-body resonance in the spectral density that can be measured via the
absorption power. Furthermore, for , we show that the system can be
tuned into an effective Anderson model with spin-dependent tunneling.Comment: 5 pages, 4 figures included, typos correcte
Reddening law and interstellar dust properties along Magellanic sight-lines
This study establishes that SMC, LMC and Milky Way extinction curves obey the
same extinction law which depends on the 2200A bump size and one parameter, and
generalizes the Cardelli, Clayton and Mathis (1989) relationship. This suggests
that extinction in all three galaxies is of the same nature. The role of linear
reddening laws over all the visible/UV wavelength range, particularly important
in the SMC but also present in the LMC and in the Milky Way, is also
highlighted and discussed.Comment: accepted for publication in Astrophysics and Space Science. 16 pages,
12 figures. Some figures are colour plot
- …