12 research outputs found

    The association between plasma tryptophan catabolites and depression: the role of symptom profiles and inflammation

    Get PDF
    Background: Tryptophan catabolites ("TRYCATs") produced by the kynurenine pathway (KP) may play a role in depression pathophysiology. Studies comparing TRYCATs levels in depressed subjects and controls provided mixed findings. We examined the association of TRYCATs levels with 1) the presence of Major Depressive Disorder (MDD), 2) depressive symptom profiles and 3) inflammatory markers.Methods: The sample from the Netherlands Study of Depression and Anxiety included participants with current (n = 1100) or remitted (n = 753) MDD DSM-IV diagnosis and healthy controls (n = 642). Plasma levels of tryptophan (TRP), kynurenine (KYN), kynurenic acid (KynA), quinolinic acid (QA), C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor (TNF) were measured. Atypical/energy-related symptom (AES), melancholic symptom (MS) and anxious-distress symptom (ADS) profiles were derived from questionnaires.Results: After adjustment for age, sex, education, smoking status, alcohol consumption and chronic diseases, no significant differences in TRYCATs were found comparing MDD cases versus controls. The MS profile was associated (q < 0.05) with lower KynA (beta = -0.05), while AES was associated with higher KYN (beta = 0.05), QA (beta = 0.06) and TRP (beta = 0.06). Inflammatory markers were associated with higher KYN (CRP beta = 0.12, IL-6 beta = 0.08, TNF beta = 0.10) and QA (CRP beta = 0.21, IL-6 beta = 0.12, TNF beta = 0.18). Significant differences against controls emerged after selecting MDD cases with high (top 30%) CRP (KYN d = 0.20, QA d = 0.33) and high TNF (KYN d = 0.24; QA d = 0.39).Conclusions: TRYCATs levels were related to specific clinical and biological features, such as atypical symptoms or a proinflammatory status. Modulation of KP may potentially benefit a specific subset of depressed patients. Clinical studies should focus on patients with clear evidence of KP dysregulations.Stress-related psychiatric disorders across the life spa

    Brain Region-Specific Transcriptomic Markers of Serotonin-1A Receptor Agonist Action Mediating Sexual Rejection and Aggression in Female Marmoset Monkeys

    No full text
    Introduction. In a marmoset model of hypoactive female sexual function, we have shown that repeated administration of the serotonin (5-HT)-1A agonist R-(+)-8-hydroxy-2-(di-N-propylamino)tetralin (8-OH-DPAT) inhibits sexual receptivity in female marmoset monkeys and increases aggression toward the male pairmate. Aim. The aims of this study are to investigate gene expression changes induced by 8-OH-DPAT in laser-microdissected brain areas that regulate female sexual function and to identify genes, functional gene classes, and pathways associated with 8-OH-DPAT-mediated inhibition of female sexual receptivity. Methods. Gene expression was measured in the medial prefrontal cortex (mPFC), medial preoptic area (mPOA), cornu ammonis-1 (CA1) area of the hippocampus (CA1), and dorsal raphe nucleus (DRN) of four 8-OH-DPAT-treated (0.1mg/kg; daily administration for 16 weeks) and four vehicle-treated female marmosets using a marmoset-specific microarray (European Marmoset Microarray [EUMAMA]) and validated by real-time quantitative polymerase chain reaction (RTqPCR). Enriched functional gene classes were determined. In a parallel candidate gene approach, the expression of serotonergic candidate genes, i.e., the 5-HT1A, 5-HT2A, and 5-HT7 receptors and the 5-HT transporter (5-HTT), was measured by RTqPCR. Main Outcome Measures. The main outcome is the differential expression of genes between 8-OH-DPAT- and vehicle-treated marmosets. Results. 8-OH-DPAT affected the gene classes important to neural development (mPFC, mPOA, and DRN), neurotransmission (mPOA), energy production (mPFC and mPOA), learning and memory (CA1), and intracellular signal transduction (DRN). Oxytocin (OXT) in the mPOA and 5-HTT in the DRN were strongly increased by 8-OH-DPAT. 5-HT1A tended to increase in the mPFC, while 5-HT7 was decreased in the CA1. Conclusions. Brain region-specific alterations of gene expression regulating neural circuitries, energy demands, and learning processes are associated with 8-OH-DPAT-induced decrease in female sexual receptivity and increase in pairmate aggression. The role of OXT in the serotonergic regulation of female sexual behavior and partner interactions warrants attention in future studies.Diabetes mellitus: pathophysiological changes and therap

    Regulation of serotonin release by inhibitory and excitatory amino acids

    No full text

    Changing concepts on the role of serotonin in the regulation of sleep and waking

    No full text

    Designer Nucleases: Gene-Editing Therapies using CCR5 as an Emerging Target in HIV

    No full text
    corecore