9,664 research outputs found

    U(2) and Maximal Mixing of nu_{mu}

    Full text link
    A U(2) flavor symmetry can successfully describe the charged fermion masses and mixings, and supress SUSY FCNC processes, making it a viable candidate for a theory of flavor. We show that a direct application of this U(2) flavor symmetry automatically predicts a mixing of 45 degrees for nu_mu to nu_s, where nu_s is a light, right-handed state. The introduction of an additional flavor symmetry acting on the right-handed neutrinos makes the model phenomenologically viable, explaining the solar neutrino deficit as well as the atmospheric neutrino anomaly, while giving a potential hot dark matter candidate and retaining the theory's predictivity in the quark sector.Comment: 20 pages, 1 figur

    High Resolution X-Ray Imaging of the Center of IC342

    Get PDF
    We presented the result of a high resolution (FWHM~0.5'') 12 ks Chandra HRC-I observation of the starburst galaxy IC342 taken on 2 April 2006. We identified 23 X-ray sources within the central 30' x 30' region of IC342. Our HRC-I observation resolved the historical Ultraluminous X-ray sources (ULX), X3, near the nucleus into 2 sources, namely C12 and C13, for the first time. The brighter source C12, with L(0.08-10keV)=(6.66\pm0.45)\times10^{38}ergs^-1, was spatially extended (~82 pc x 127 pc). From the astrometric registration of the X-ray image, C12 was at R.A.=03h:46m:48.43s, decl.=+68d05m47.45s, and was closer to the nucleus than C13. Thus we concluded that source was not an ULX and must instead be associated with the nucleus. The fainter source C13, with L(0.08-10keV)=(5.1\pm1.4) x 10^{37}ergs^-1 was consistent with a point source and located $6.51'' at P.A. 240 degree of C12. We also analyzed astrometrically corrected optical Hubble Space Telescope and radio Very Large Array images, a comparison with the X-ray image showed similarities in their morphologies. Regions of star formation within the central region of IC342 were clearly visible in HST H alpha image and this was the region where 3 optical star clusters and correspondingly our detected X-ray source C12 were observed. We found that a predicted X-ray emission from starburst was very close to the observed X-ray luminosity of C12, suggesting that nuclear X-ray emission in IC342 was dominated by starburst. Furthermore, we discussed the possibility of AGN in the nucleus of IC342. Although our data was not enough to give a firm existence of an AGN, it could not be discarded.Comment: 29 page, 8 figures, accepted by Ap

    Coercive Field and Magnetization Deficit in Ga(1-x)Mn(x)As Epilayers

    Full text link
    We have studied the field dependence of the magnetization in epilayers of the diluted magnetic semiconductor Ga(1-x)Mn(x)As for 0.0135 < x < 0.083. Measurements of the low temperature magnetization in fields up to 3 T show a significant deficit in the total moment below that expected for full saturation of all the Mn spins. These results suggest that the spin state of the non-ferromagnetic Mn spins is energetically well separated from the ferromagnetism of the bulk of the spins. We have also studied the coercive field (Hc) as a function of temperature and Mn concentration, finding that Hc decreases with increasing Mn concentration as predicted theoretically.Comment: 15 total pages -- 5 text, 1 table, 4 figues. Accepted for publication in MMM 2002 conference proceedings (APL

    Understanding mechanisms of genetic risk for adolescent internalizing and externalizing problems: The mediating role of parenting and personality

    Get PDF
    Genetic predispositions play an important role in the development of internalizing and externalizing behaviors. Understanding the mechanisms through which genetic risk unfolds to influence these developmental outcomes is critical for developing prevention and intervention efforts, capturing key elements of Irv's research agenda and scientific legacy. In this study, we examined the role of parenting and personality in mediating the effect of genetic risk on adolescents' major depressive disorder and conduct disorder symptoms. Longitudinal data were drawn from a sample of 709 European American adolescents and their mothers from the Collaborative Studies on Genetics of Alcoholism. Results from multivariate path analysis indicated that adolescents' depressive symptoms genome-wide polygenic scores (DS_GPS) predicted lower parental knowledge, which in turn was associated with more subsequent major depressive disorder and conduct disorder symptoms. Adolescents' DS_GPS also had indirect effects on these outcomes via personality, with a mediating effect via agreeableness but not via other dimensions of personality. Findings revealed that the pattern of associations was similar across adolescent gender. Our findings emphasize the important role of evocative gene-environment correlation processes and intermediate phenotypes in the pathways of risk from genetic predispositions to complex adolescent outcomes

    Systematics of parton-medium interaction from RHIC to LHC

    Full text link
    Despite a wealth of experimental data for high-P_T processes in heavy-ion collisions, discriminating between different models of hard parton-medium interactions has been difficult. A key reason is that the pQCD parton spectrum at RHIC is falling so steeply that distinguishing even a moderate shift in parton energy from complete parton absorption is essentially impossible. In essence, energy loss models are effectively only probed in the vicinity of zero energy loss and, as a result, at RHIC energies only the pathlength dependence of energy loss offers some discriminating power. At LHC however, this is no longer the case: Due to the much flatter shape of the parton p_T spectra originating from 2.76 AGeV collisions, the available data probe much deeper into the model dynamics. A simultaneous fit of the nuclear suppression at both RHIC and LHC energies thus has great potential for discriminating between various models that yield equally good descriptions of RHIC data alone.Comment: Talk given at Quark Matter 2011, 22-28 May 2011, Annecy, Franc

    The abundance of relativistic axions in a flaton model of Peccei-Quinn symmetry

    Full text link
    Flaton models of Peccei-Quinn symmetry have good particle physics motivation, and are likely to cause thermal inflation leading to a well-defined cosmology. They can solve the Ό\mu problem, and generate viable neutrino masses. Canonical flaton models predict an axion decay constant F_a of order 10^{10} GeV and generic flaton models give F_a of order 10^9 GeV as required by observation. The axion is a good candidate for cold dark matter in all cases, because its density is diluted by flaton decay if F_a is bigger than 10^{12} GeV. In addition to the dark matter axions, a population of relativistic axions is produced by flaton decay, which at nucleosynthesis is equivalent to some number \delta N_\nu of extra neutrino species. Focussing on the canonical model, containing three flaton particles and two flatinos, we evaluate all of the flaton-flatino-axion interactions and the corresponding axionic decay rates. They are compared with the dominant hadronic decay rates, for both DFSZ and KSVZ models. These formulas provide the basis for a precise calculation of the equivalent \delta N_\nu in terms of the parameters (masses and couplings). The KSVZ case is probably already ruled out by the existing bound \delta N_\nu\lsim 1. The DFSZ case is allowed in a significant region of parameter space, and will provide a possible explanation for any future detection of nonzero ΎNΜ\delta N_\nu

    Spin and Charge Texture around In-Plane Charge Centers in the CuO_2 planes

    Full text link
    Recent experiments on La_2Cu_{1-x}Li_xO_4 show that although the doped holes remain localized near the substitutional Li impurities, magnetic order is rapidly suppressed. An examination of the spin texture around a bound hole in a CuO_2 plane shows that the formation of a skyrmion is favored in a wide range of parameters, as was previously proposed in the context of Sr doping. The spin texture may be observable by elastic diffuse neutron scattering, and may also have a considerable effect on NMR lineshapes.Comment: 4 pages, postscript file, hardcopy available upon request, to appear in PR

    Atmospheric and Solar Neutrino Masses from Horizontal U(1) Symmetry

    Get PDF
    We study the neutrino mass matrix in supersymmetric models in which the quark and charged lepton mass hierarchies and also the suppression of baryon or lepton number violating couplings are all explained by horizontal U(1)XU(1)_X symmetry. It is found that the neutrino masses and mixing angles suggested by recent atmospheric and solar neutrino experiments arise naturally in this framework which fits in best with gauge-mediated supersymmetry breaking with large tan⁥ÎČ\tan\beta. This framework highly favors the small angle MSW oscillation of solar neutrinos, and determine the order of magnitudes of all the neutrino mixing angles and mass hierarchies.Comment: No figures. 14 pages, revte

    Is There a Peccei-Quinn Phase Transition?

    Full text link
    The nature of axion cosmology is usually said to depend on whether the Peccei-Quinn (PQ) symmetry breaks before or after inflation. The PQ symmetry itself is believed to be an accident, so there is not necessarily a symmetry during inflation at all. We explore these issues in some simple models, which provide examples of symmetry breaking before and after inflation, or in which there is no symmetry during inflation and no phase transition at all. One effect of these observations is to relax the constraints from isocurvature fluctuations due to the axion during inflation. We also observe new possibilities for evading the constraints due to cosmic strings and domain walls, but they seem less generic.Comment: 14 pages. Several references adde
    • 

    corecore