125,463 research outputs found

    Dielectric behavior of oblate spheroidal particles: Application to erythrocytes suspensions

    Full text link
    We have investigated the effect of particle shape on the eletrorotation (ER) spectrum of living cells suspensions. In particular, we consider coated oblate spheroidal particles and present a theoretical study of ER based on the spectral representation theory. Analytic expressions for the characteristic frequency as well as the dispersion strength can be obtained, thus simplifying the fitting of experimental data on oblate spheroidal cells that abound in the literature. From the theoretical analysis, we find that the cell shape, coating as well as material parameters can change the ER spectrum. We demonstrate good agreement between our theoretical predictions and experimental data on human erthrocytes suspensions.Comment: RevTex; 5 eps figure

    T invariance of Higgs interactions in the standard model

    Full text link
    In the standard model, the Cabibbo-Kobayashi-Maskawa matrix, which incorporates the time-reversal violation shown by the charged current weak interactions, originates from the Higgs-quark interactions. The Yukawa interactions of quarks with the physical Higgs particle can contain further complex phase factors, but nevertheless conserve T, as shown by constructing the fermion T transformation and the invariant euclidean fermion measure.Comment: LaTeX, 4 pages; presented at PASCOS'0

    Many-body dipole-induced dipole model for electrorheological fluids

    Full text link
    Theoretical investigations on electrorheological (ER) fluids usually rely on computer simulations. An initial approach for these studies would be the point-dipole (PD) approximation, which is known to err considerably when the particles approach and finally touch due to many-body and multipolar interactions. Thus various work attempted to go beyond the PD model. Being beyond the PD model, previous attempts have been restricted to either local-field effects only or multipolar effects only, but not both. For instance, we recently proposed a dipole-induced-dipole (DID) model which is shown to be both more accurate than the PD model and easy to use. This work is necessary because the many-body (local-field) effect is included to put forth the many-body DID model. The results show that the multipolar interactions can indeed be dominant over the dipole interaction, while the local-field effect may yield an important correction.Comment: RevTeX, 3 eps figure

    Nonlinear ac responses of electro-magnetorheological fluids

    Full text link
    We apply a Langevin model to investigate the nonlinear ac responses of electro-magnetorheological (ERMR) fluids under the application of two crossed dc magnetic (z axis) and electric (x axis) fields and a probing ac sinusoidal magnetic field. We focus on the influence of the magnetic fields which can yield nonlinear behaviors inside the system due to the particles with a permanent magnetic dipole moment. Based on a perturbation approach, we extract the harmonics of the magnetic field and orientational magnetization analytically. To this end, we find that the harmonics are sensitive to the degree of anisotropy of the structure as well as the field frequency. Thus, it is possible to real-time monitor the structure transformation of ERMR fluids by detecting the nonlinear ac responses.Comment: 21 pages, 4 figure

    Transition Temperature of a Uniform Imperfect Bose Gas

    Full text link
    We calculate the transition temperature of a uniform dilute Bose gas with repulsive interactions, using a known virial expansion of the equation of state. We find that the transition temperature is higher than that of an ideal gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a is the S-wave scattering length, and K_0 is a constant given in the paper. This disagrees with all existing results, analytical or numerical. It agrees exactly in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe

    Quantum signatures of self-trapping transition in attractive lattice bosons

    Full text link
    We consider the Bose-Hubbard model describing attractive bosonic particles hopping across the sites of a translation-invariant lattice, and compare the relevant ground-state properties with those of the corresponding symmetry-breaking semiclassical nonlinear theory. The introduction of a suitable measure allows us to highlight many correspondences between the nonlinear theory and the inherently linear quantum theory, characterized by the well-known self-trapping phenomenon. In particular we demonstrate that the localization properties and bifurcation pattern of the semiclassical ground-state can be clearly recognized at the quantum level. Our analysis highlights a finite-number effect.Comment: 9 pages, 8 figure

    Bose-Einstein condensation in an optical lattice

    Full text link
    In this paper we develop an analytic expression for the critical temperature for a gas of ideal bosons in a combined harmonic lattice potential, relevant to current experiments using optical lattices. We give corrections to the critical temperature arising from effective mass modifications of the low energy spectrum, finite size effects and excited band states. We compute the critical temperature using numerical methods and compare to our analytic result. We study condensation in an optical lattice over a wide parameter regime and demonstrate that the critical temperature can be increased or reduced relative to the purely harmonic case by adjusting the harmonic trap frequency. We show that a simple numerical procedure based on a piecewise analytic density of states provides an accurate prediction for the critical temperature.Comment: 10 pages, 5 figure

    Elastic energy of proteins and the stages of protein folding

    Full text link
    We propose a universal elastic energy for proteins, which depends only on the radius of gyration RgR_{g} and the residue number NN. It is constructed using physical arguments based on the hydrophobic effect and hydrogen bonding. Adjustable parameters are fitted to data from the computer simulation of the folding of a set of proteins using the CSAW (conditioned self-avoiding walk) model. The elastic energy gives rise to scaling relations of the form Rg∼NνR_{g}\sim N^{\nu} in different regions. It shows three folding stages characterized by the progression with exponents ν=3/5,3/7,2/5\nu = 3/5, 3/7, 2/5, which we identify as the unfolded stage, pre-globule, and molten globule, respectively. The pre-globule goes over to the molten globule via a break in behavior akin to a first-order phase transition, which is initiated by a sudden acceleration of hydrogen bonding

    Degenerate Fermi gas in a combined harmonic-lattice potential

    Full text link
    In this paper we derive an analytic approximation to the density of states for atoms in a combined optical lattice and harmonic trap potential as used in current experiments with quantum degenerate gases. We compare this analytic density of states to numerical solutions and demonstrate its validity regime. Our work explicitly considers the role of higher bands and when they are important in quantitative analysis of this system. Applying our density of states to a degenerate Fermi gas we consider how adiabatic loading from a harmonic trap into the combined harmonic-lattice potential affects the degeneracy temperature. Our results suggest that occupation of excited bands during loading should lead to more favourable conditions for realizing degenerate Fermi gases in optical lattices.Comment: 11 pages, 9 figure
    • …
    corecore