23,092 research outputs found

    Economics of polysilicon processes

    Get PDF
    Techniques are being developed to provide lower cost polysilicon material for solar cells. Existing technology which normally provides semiconductor industry polysilicon material is undergoing changes and also being used to provide polysilicon material for solar cells. Economics of new and existing technologies are presented for producing polysilicon. The economics are primarily based on the preliminary process design of a plant producing 1,000 metric tons/year of silicon. The polysilicon processes include: Siemen's process (hydrogen reduction of trichlorosilane); Union Carbide process (silane decomposition); and Hemlock Semiconductor process (hydrogen reduction of dichlorosilane). The economics include cost estimates of capital investment and product cost to produce polysilicon via the technology. Sensitivity analysis results are also presented to disclose the effect of major paramentes such as utilities, labor, raw materials and capital investment

    Doping evolution of the electronic structure in the single-layer cuprates Bi2_2Sr2−x_{2-x}Lax_xCuO6+δ_{6+\delta}: Comparison with other single-layer cuprates

    Full text link
    We have performed angle-resolved photoemission and core-level x-ray photoemission studies of the single-layer cuprate Bi2_2Sr2−x_{2-x}Lax_xCuO6+δ_{6+\delta} (Bi2201) and revealed the doping evolution of the electronic structure from the lightly-doped to optimally-doped regions. We have observed the formation of the dispersive quasi-particle band, evolution of the Fermi ``arc'' into the Fermi surface and the shift of the chemical potential with hole doping as in other cuprates. The doping evolution in Bi2201 is similar to that in Ca2−x_{2-x}Nax_{x}CuO2_{2}Cl2_2 (Na-CCOC), where a rapid chemical potential shift toward the lower Hubbard band of the parent insulator has been observed, but is quite different from that in La2−x_{2-x}Srx_{x}CuO4_{4} (LSCO), where the chemical potential does not shift, yet the dispersive band and the Fermi arc/surface are formed around the Fermi level already in the lightly-doped region. The (underlying) Fermi surface shape and band dispersions are quantitatively analyzed using tight-binding fit, and the deduced next-nearest-neighbor hopping integral t′t' also confirm the similarity to Na-CCOC and the difference from LSCO

    An Upsilon Point in a Spin Model

    Full text link
    We present analytic evidence for the occurrence of an upsilon point, an infinite checkerboard structure of modulated phases, in the ground state of a spin model. The structure of the upsilon point is studied by calculating interface--interface interactions using an expansion in inverse spin anisotropy.Comment: 18 pages ReVTeX file, including 6 figures encoded with uufile

    Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence

    Get PDF
    BACKGROUND: Knowing the submitochondria localization of a mitochondria protein is an important step to understand its function. We develop a method which is based on an extended version of pseudo-amino acid composition to predict the protein localization within mitochondria. This work goes one step further than predicting protein subcellular location. We also try to predict the membrane protein type for mitochondrial inner membrane proteins. RESULTS: By using leave-one-out cross validation, the prediction accuracy is 85.5% for inner membrane, 94.5% for matrix and 51.2% for outer membrane. The overall prediction accuracy for submitochondria location prediction is 85.2%. For proteins predicted to localize at inner membrane, the accuracy is 94.6% for membrane protein type prediction. CONCLUSION: Our method is an effective method for predicting protein submitochondria location. But even with our method or the methods at subcellular level, the prediction of protein submitochondria location is still a challenging problem. The online service SubMito is now available at

    Maximally Symmetric Minimal Unification Model SO(32) with Three Families in Ten Dimensional Space-time

    Full text link
    Based on a maximally symmetric minimal unification hypothesis and a quantum charge-dimension correspondence principle, it is demonstrated that each family of quarks and leptons belongs to the Majorana-Weyl spinor representation of 14-dimensions that relate to quantum spin-isospin-color charges. Families of quarks and leptons attribute to a spinor structure of extra 6-dimensions that relate to quantum family charges. Of particular, it is shown that 10-dimensions relating to quantum spin-family charges form a motional 10-dimensional quantum space-time with a generalized Lorentz symmetry SO(1,9), and 10-dimensions relating to quantum isospin-color charges become a motionless 10-dimensional quantum intrinsic space. Its corresponding 32-component fermions in the spinor representation possess a maximal gauge symmetry SO(32). As a consequence, a maximally symmetric minimal unification model SO(32) containing three families in ten dimensional quantum space-time is naturally obtained by choosing a suitable Majorana-Weyl spinor structure into which quarks and leptons are directly embedded. Both resulting symmetry and dimensions coincide with the ones of type I string and heterotic string SO(32) in string theory.Comment: 17 pages, RevTex, published version with minor typos correcte

    ^{59}Co NMR evidence for charge ordering below T_{CO}\sim 51 K in Na_{0.5}CoO_2

    Full text link
    The CoO2_{2} layers in sodium-cobaltates Nax_{x}CoO2_{2} may be viewed as a spin S=1/2S=1/2 triangular-lattice doped with charge carriers. The underlying physics of the cobaltates is very similar to that of the high TcT_{c} cuprates. We will present unequivocal 59^{59}Co NMR evidence that below TCO∼51KT_{CO}\sim51 K, the insulating ground state of the itinerant antiferromagnet Na0.5_{0.5}CoO2_{2} (TN∼86KT_{N}\sim 86 K) is induced by charge ordering.Comment: Phys. Rev. Lett. 100 (2008), in press. 4 figure

    Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs

    Get PDF
    A compact, narrow-linewidth, tunable source of THz radiation has been developed for spectroscopy and other high-resolution applications. Distributed-Bragg-reflector (DBR) diode lasers at 850 nm are used to pump a low-temperature-grown GaAs photomixer. Resonant optical feedback is employed to stabilize the center frequencies and narrow the linewidths of the DBR lasers. The heterodyne linewidth full-width at half-maximum of two optically locked DBR lasers is 50 kHz on the 20 ms time scale and 2 MHz over 10 s; free-running DBR lasers have linewidths of 40 and 90 MHz on such time scales. This instrument has been used to obtain rotational spectra of acetonitrile (CH3CN) at 313 GHz. Detection limits of 1 × 10^–4 Hz^1/2 (noise/total power) have been achieved, with the noise floor dominated by the detector's noise equivalent power
    • …
    corecore