8,391 research outputs found
High power (60mW) single frequency erbium:ytterbium codoped fiber laser
The characteristics of a high power Er3+:Yb3+ single frequency fiber laser pumped at 980nm are reported. The device gives 60mW output power with RIN 10MHz and linewidth 500kHz. At low output powers (< 30mW) the slope efficiency is as high as 25%, falling to 12% at higher powers, the saturation behaviour is related to a bottleneck effect due to the finite Yb-Er transfer rate. Improved performance can be obtained using new fibers with an increased rare-earth concentration which show negligible signs of erbium clustering
Noise Predictions for STM in Systems with Local Electron Nematic Order
We propose that thermal noise in local stripe orientation should be readily
detectable via STM on systems in which local stripe orientations are strongly
affected by quenched disorder. Stripes, a unidirectional, nanoscale modulation
of electronic charge, are strongly affected by quenched disorder in
two-dimensional and quasi-two-dimensional systems. While stripe orientations
tend to lock to major lattice directions, dopant disorder locally breaks
rotational symmetry. In a host crystal with otherwise rotational
symmetry, stripe orientations in the presence of quenched disorder map to the
random field Ising model. While the low temperature state of such a system is
generally a stripe glass in two dimensional or strongly layered systems, as the
temperature is raised, stripe orientational fluctuations become more prevalent.
We propose that these thermally excited fluctuations should be readily
detectable in scanning tunneling spectroscopy as {\em telegraph noise} in the
high voltage part of the local curves. We predict the spatial, temporal,
and thermal evolution of such noise, including the circumstances under which
such noise is most likely to be observed. In addition, we propose an in-situ
test, amenable to any local scanning probe, for assessing whether such noise is
due to correlated fluctuations rather than independent switchers.Comment: 8 pages, 8 figure
- âŠ