1,377 research outputs found

    Direct Imaging of Spatially Modulated Superfluid Phases in Atomic Fermion Systems

    Full text link
    It is proposed that the spatially modulated superfluid phase, or the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state could be observed in resonant Fermion atomic condensates which are realized recently. We examine optimal experimental setups to achieve it by solving Bogoliubov-de Gennes equation both for idealized one-dimensional and realistic three-dimensional cases. The spontaneous modulation of this superfluid is shown to be directly imaged as the density profiles either by optical absorption or by Stern-Gerlach experiments.Comment: 4 pages, 3 figure

    Topological Structure of a Vortex in Fulde-Ferrell-Larkin-Ovchinnikov State

    Full text link
    We find theoretically that the vortex core in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is quite different from the ordinary core by a simple topological reason. The intersection point of a vortex and nodal plane of the FFLO state empties the excess spins. This leads to observable consequences in the spatial structure of the spontaneous magnetization. We analyze this topological structure based on the low lying excitation spectrum by solving microscopic Bogoliubov-de Gennes equation to clarify its physical origin.Comment: 4 pages, 4 figure

    Magnetic skyrmion lattices in heavy fermion superconductor UPt3

    Full text link
    Topological analysis of nearly SO(3)_{spin} symmetric Ginzburg--Landau theory, proposed for UPt3_{3} by Machida et al, shows that there exists a new class of solutions carrying two units of magnetic flux: the magnetic skyrmion. These solutions do not have singular core like Abrikosov vortices and at low magnetic fields they become lighter for strongly type II superconductors. Magnetic skyrmions repel each other as 1/r1/r at distances much larger then the magnetic penetration depth λ\lambda, forming a relatively robust triangular lattice. The magnetic induction near Hc1H_{c1} is found to increase as (H−Hc1)2(H-H_{c1})^{2}. This behavior agrees well with experiments.Comment: 4 pages, 2 figures, 2 column format; v2:misprint in the title is correcte

    Theory of Ferromagnetic Superconductivity

    Full text link
    It is argued that the pairing symmetry realized in a ferromagnetic superconductor UGe2_2 must be a non-unitary triplet pairing. This particular state is free from the Pauli limitation and can survive under a huge internal molecular filed. To check our identification we examine its basic properties and several experiments are proposed. In particular, the external field is used to raise TcT_c by controlling the internal spontaneous dipole field.Comment: 4 pages, no figure

    Generic Phase Diagram of Fermion Superfluids with Population Imbalance

    Get PDF
    It is shown by microscopic calculations for trapped imbalanced Fermi superfluids that the gap function has always sign changes, i.e., the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state like, up to a critical imbalance PcP_c, beyond which normal state becomes stable, at temperature T=0. A phase diagram is constructed in TT vs PP, where the BCS state without sign change is stable only at T≠0T\neq 0. We reproduce the observed bimodality in the density profile to identify its origin and evaluate PcP_c as functions of TT and the coupling strength. These dependencies match with the recent experiments.Comment: 5 pages, 5 figures, replaced by the version to appear in PR

    Incommensurate Magnetism around Vortices and Impurities in High-TcT_c Superconductors

    Full text link
    By solving self-consistently an effective Hamiltonian including interactions for both antiferromagnetic spin-density wave (SDW) and d-wave superconducting (DSC) orderings, a comparison study is made for the local magnetic structure around superconducting vortices and unitary impurities. To represent the optimally doped regime of cuprates, the parameter values are chosen such that the DSC is dominant while the SDW is vanishingly small. We show that when vortices are introduced into the superconductor, an oscillating SDW is induced around them. The oscillation period of the SDW is microscopically found, consistent with experiments, to be eight lattice constants (8a08a_0). The associated charge-density wave (CDW) oscillates with a period of one half (4a04a_0) of the SDW. In the case of unitary impurities, we find a SDW modulation with identical periodicity, however without an associated CDW. We propose neutron scattering experiments to test this prediction.Comment: 5 pages, 4 eps figures (color) included in the tex

    Quantum Hall line junction with impurities as a multi-slit Luttinger liquid interferometer

    Full text link
    We report on quantum interference between a pair of counterpropagating quantum Hall edge states that are separated by a high quality tunnel barrier. Observed Aharonov-Bohm oscillations are analyzed in terms of resonant tunneling between coupled Luttinger liquids that creates bound electronic states between pairs of tunnel centers that act like interference slits. We place a lower bound in the range of 20-40 μ\mum for the phase coherence length and directly confirm the extended phase coherence of quantum Hall edge states.Comment: 4 pages, 3 figures, 1 tabl

    Lateral distribution of high energy hadrons and gamma ray in air shower cores observed with emulsion chambers

    Get PDF
    A high energy event of a bundle of electrons, gamma rays and hadronic gamma rays in an air shower core were observed. The bundles were detected with an emulsion chamber with thickness of 15 cm lead. This air shower is estimated to be initiated with a proton with energy around 10 to the 17th power to 10 to the 18th power eV at an altitude of around 100 gmc/2. Lateral distributions of the electromagnetic component with energy above 2 TeV and also the hadronic component of energy above 6 TeV of this air shower core were determined. Particles in the bundle are produced with process of the development of the nuclear cascade, the primary energy of each interaction in the cascade which produces these particles is unknown. To know the primary energy dependence of transverse momentum, the average products of energy and distance for various average energies of secondary particles are studied
    • …
    corecore