46 research outputs found

    Exchange Field Induced Magnetoresistance in Colossal Magnetoresistance Manganites

    Full text link
    The effect of an exchange field on electrical transport in thin films of metallic ferromagnetic manganites has been investigated. The exchange field was induced both by direct exchange coupling in a ferromagnet/antiferromagnet multilayer and by indirect exchange interaction in a ferromagnet/paramagnet superlattice. The electrical resistance of the manganite layers was found to be determined by the absolute value of the vector sum of the effective exchange field and the external magnetic field.Comment: 5 pages, 4 figure

    Magnetic Order in the Double Exchange Model in Infinite Dimensions

    Full text link
    We studied magnetic properties of the double exchange (DE) model with S=1/2 localized spins at T=0, using exact diagonalization in the framework of the dynamical mean field theory. Obtained phase diagram contains ferromagnetic, antiferromagnetic and paramagnetic phases. Comparing the phase diagram with that of the DE model with classical localized spins, we found that the quantum fluctuations of localized spins partly destabilize the ferromagnetism and expand the paramagnetic phase region. We found that phase separations occur between the antiferromagnetic and paramagnetic phases as well as the paramagnetic and ferromagnetic ones.Comment: 11 pages, LaTeX, 9 eps-figure

    Perturbative calculation of the spin-wave dispersion in a disordered double-exchange model

    Full text link
    We study the spin-wave dispersion of localized spins in a disordered double-exchange model using the perturbation theory with respect to the strength of the disorder potential. We calculate the dispersion upto the next-leading order, and extensively examine the case of one-dimension. We show that in that case, disorder yields anomalous gapped-like behavior at the Fermi wavenumber of the conduction electrons.Comment: 9 pages, 5 figure

    Magnetoresistance in Mn pyrochlore: electrical transport in a low carrier density ferromagnet

    Full text link
    We discuss magnetotransport in a low density electron gas coupled to spin fluctuations near and above a ferromagnetic transition. Provided the density is low enough (nâ‰Č1/Ο3(T)n \lesssim 1/\xi^{3}(T), with Ο(T)\xi(T) the ferromagnetic correlation length), spin polarons form in an intermediate temperature regime above TcT_c. Both in the spin polaron regime, and in the itinerant regime nearer TcT_c, the magnetoresistance is large. We propose that this provides a good model for ``colossal'' magnetoresistance in the pyrochlore Tl2−x_{2-x}Scx_xMn2_2O7_7, fundamentally different from the mechanism in the perovskite manganites such as La1−x_{1-x}Srx_xMnO3_3.Comment: 4 pages, LaTex, + 3 figure

    Magnetism and Structural Distortion in the La0.7Sr0.3MnO3 Metallic Ferromagnet

    Full text link
    Neutron scattering studies on a single crystal of the highly-correlated electron system, La1-xSrxMnO3 with x~0.3, have been carried out elucidating both the spin and lattice dynamics of this metallic ferromagnet. We report a large measured value of the spin wave stiffness constant, which directly shows that the electron transfer energy of the d band is large. The spin dynamics, including magnetic critical scattering, demonstrate that this material behaves similar to other typical metallic ferromagnets such as Fe or Ni. The crystal structure is rhombohedral, as previously reported, for all temperatures studied (below ~425K). We have observed new superlattice peaks which show that the primary rhombohedral lattice distortion arises from oxygen octahedra rotations resulting in an R-3c structure. The superlattice reflection intensities which are very sensitive to structural changes are independent of temperature demonstrating that there is no primary lattice distortion anomaly at the magnetic transition temperature, Tc = 378.1 K, however there is a lattice contraction.Comment: Submitted to Phys. Rev. B. (03Aug95) Uuencoded gz-compressed .tar file of Postscript text (12 pages) and 6 figures. Also available by WWW from http://insti.physics.sunysb.edu/~mmartin/ under my list of publications or by e-mail reques

    Electron Correlation and Jahn-Teller Interaction in Manganese Oxides

    Full text link
    The interplay between the electron repulsion UU and the Jahn-Teller electron-phonon interation ELRE_{LR} is studied with a large dd model for the ferromagnetic state of the manganese oxides. These two interactions collaborate to induce the local isospin (orbital) moments and reduce the bandwidth BB. Especially the retardation effect of the Jahn-Teller phonon with the frequency Ω\Omega is effective to reduce BB, but the strong Ω\Omega-dependence occurs even when the Coulombic interaction is dominating (U>>ELR U >> E_{LR}) as long as ELR>ΩE_{LR} > \Omega. The phonon spectrum consists of two components, i.e., the temperature independent sharp peak at ω=Ω~=Ω[(U+4ELR)/U]1/2\omega = {\tilde \Omega} = \Omega [(U +4 E_{LR})/U]^{1/2} and that corresponding to the Kondo peak. These results compared with the experiments suggest that Ω<ELR<U\Omega <E_{LR} <U in the metallic manganese oxides.Comment: REVTE

    Phase Transition in Perovskite Manganites with Orbital Degree of Freedom

    Full text link
    Roles of orbital degree of freedom of Mn ions in phase transition as a function of temperature and hole concentration in perovskite manganites are studied. It is shown that the orbital order-disorder transition is of the first order in the wide region of hole concentration and the Neˊ\rm \acute{e}el temperature for the anisotropic spin ordering, such as the layer-type antiferromagnetic one, is lower than the orbital ordering temperature due to the anisotropy in the orbital space. The calculated results of the temperature dependence of the spin and orbital order parameters explain a variety of the experiments observed in manganites.Comment: 10 pages, 5 figure

    Polarization Dependence of Anomalous X-ray Scattering in Orbital Ordered Manganites

    Full text link
    In order to determine types of the orbital ordering in manganites, we study theoretically the polarization dependence of the anomalous X-ray scattering which is caused by the anisotropy of the scattering factor. The general formulae of the scattering intensity in the experimental optical system is derived and the atomic scattering factor is calculated in the microscopic electronic model. By using the results, the X-ray scattering intensity in several types of the orbital ordering is numerically calculated as a function of azimuthal and analyzer angles.Comment: 9 pages, 7 figure

    Work function changes in the double layered manganite La1.2Sr1.8Mn2O7

    Full text link
    We have investigated the behaviour of the work function of La1.2Sr1.8Mn2O7 as a function of temperature by means of photoemission. We found a decrease of 55 +/- 10 meV in going from 60 K to just above the Curie temperature (125 K) of the sample. Above T_C the work function appears to be roughly constant. Our results are exactly opposite to the work function changes calculated from the double-exchange model by Furukawa, but are consistent with other measurements. The disagreement with double-exchange can be explained using a general thermodynamic relation valid for second order transitions and including the extra processes involved in the manganites besides double-exchange interaction.Comment: 6 pages, 4 figures included in tex

    Theory of Raman Scattering from Orbital Excitations in Manganese Oxides

    Get PDF
    We present a theory of the Raman scattering from the orbital wave excitations in manganese oxides. Two excitation processes of the Raman scattering are proposed. The Raman scattering cross section is formulated by using the pseudospin operator for orbital degree of freedom in a Mn ion. The Raman spectra from the orbital wave excitations are calculated and their implications in the recent experimental results reported in LaMnO3_3 are discussed.Comment: 10 pages, 7 figure
    corecore