171 research outputs found

    The mean electromotive force due to turbulence of a conducting fluid in the presence of mean flow

    Full text link
    The mean electromotive force caused by turbulence of an electrically conducting fluid, which plays a central part in mean--field electrodynamics, is calculated for a rotating fluid. Going beyond most of the investigations on this topic, an additional mean motion in the rotating frame is taken into account. One motivation for our investigation originates from a planned laboratory experiment with a Ponomarenko-like dynamo. In view of this application the second--order correlation approximation is used. The investigation is of high interest in astrophysical context, too. Some contributions to the mean electromotive are revealed which have not been considered so far, in particular contributions to the α\alpha--effect and related effects due to the gradient of the mean velocity. Their relevance for dynamo processes is discussed. In a forthcoming paper the results reported here will be specified to the situation in the laboratory and partially compared with experimental findings.Comment: 16 pages, 2 figures, in PRE pres

    Mean-field transport in stratified and/or rotating turbulence

    Full text link
    We investigate the mean electromotive force in the kinematic framework, that is, ignoring the back-reaction of the magnetic field on the fluid velocity, under the assumption of axisymmetric turbulence determined by the presence of either rotation, density stratification, or both. We use an analogous approach for the mean passive scalar flux. As an alternative to convection, we consider forced turbulence in an isothermal layer. When using standard ansatzes, the mean magnetic transport is then determined by nine, and the mean passive scalar transport by four coefficients. We give results for all these transport coefficients. We use the test-field method and the test-scalar method, where transport coefficients are determined by solving sets of equations with properly chosen mean magnetic fields or mean scalars. These methods are adapted to mean fields which may depend on all three space coordinates. We find the anisotropy of turbulent diffusion to be moderate in spite of rapid rotation or strong density stratification. Contributions to the mean electromotive force determined by the symmetric part of the gradient tensor of the mean magnetic field, which were ignored in several earlier investigations, turn out to be important. In stratified rotating turbulence, the α\alpha effect is strongly anisotropic, suppressed along the rotation axis on large length scales, but strongly enhanced at intermediate length scales. Also the \OO\times\meanJJ effect is enhanced at intermediate length scales. The turbulent passive scalar diffusivity is typically almost twice as large as the turbulent magnetic diffusivity. Both magnetic and passive scalar diffusion are slightly enhanced along the rotation axis, but decreased if there is gravity.Comment: 12 pages, 8 figures, A&A, publishe

    Mean-field diffusivities in passive scalar and magnetic transport in irrotational flows

    Full text link
    Certain aspects of the mean-field theory of turbulent passive scalar transport and of mean-field electrodynamics are considered with particular emphasis on aspects of compressible fluids. It is demonstrated that the total mean-field diffusivity for passive scalar transport in a compressible flow may well be smaller than the molecular diffusivity. This is in full analogy to an old finding regarding the magnetic mean-field diffusivity in an electrically conducting turbulently moving compressible fluid. These phenomena occur if the irrotational part of the motion dominates the vortical part, the P\`eclet or magnetic Reynolds number is not too large, and, in addition, the variation of the flow pattern is slow. For both the passive scalar and the magnetic cases several further analytical results on mean-field diffusivities and related quantities found within the second-order correlation approximation are presented, as well as numerical results obtained by the test-field method, which applies independently of this approximation. Particular attention is paid to non-local and non-instantaneous connections between the turbulence-caused terms and the mean fields. Two examples of irrotational flows, in which interesting phenomena in the above sense occur, are investigated in detail. In particular, it is demonstrated that the decay of a mean scalar in a compressible fluid under the influence of these flows can be much slower than without any flow, and can be strongly influenced by the so-called memory effect, that is, the fact that the relevant mean-field coefficients depend on the decay rates themselves.Comment: 13 pages, 10 figures, published on PR

    General second-rank correlation tensors for homogeneous magnetohydrodynamic turbulence

    Get PDF
    The properties and structure of second-order (Cartesian) correlation tensors are derived for the general case of two solenoidal random vector fields. The theory is intended to describe homogeneous magnetohydrodynamic turbulence, with no assumed rotational or reflectional symmetries. Each correlation tensor can be written in terms of four scalar generating functions and the relationship of these functions to the potentials that generate the poloidal and toroidal components of the underlying vector fields is derived. The physical nature of the scalar functions is investigated and their true or pseudoscalar character is ascertained. In our general discussion we clarify several misleading statements dating back to Robertson’s original paper in the field [Proc. Camb. Philos. Soc. 36, 209 (1940)]. It is also shown that using the one-dimensional correlation function, it is possible to obtain spectral information on the induced electric field in directions perpendicular to the measurement direction

    On the effects of turbulence on a screw dynamo

    Full text link
    In an experiment in the Institute of Continuous Media Mechanics in Perm (Russia) an non--stationary screw dynamo is intended to be realized with a helical flow of liquid sodium in a torus. The flow is necessarily turbulent, that is, may be considered as a mean flow and a superimposed turbulence. In this paper the induction processes of the turbulence are investigated within the framework of mean--field electrodynamics. They imply of course a part which leads to an enhanced dissipation of the mean magnetic field. As a consequence of the helical mean flow there are also helical structures in the turbulence. They lead to some kind of α\alpha--effect, which might basically support the screw dynamo. The peculiarity of this α\alpha--effect explains measurements made at a smaller version of the device envisaged for the dynamo experiment. The helical structures of the turbulence lead also to other effects, which in combination with a rotational shear are potentially capable of dynamo action. A part of them can basically support the screw dynamo. Under the conditions of the experiment all induction effects of the turbulence prove to be rather weak in comparison to that of the main flow. Numerical solutions of the mean--field induction equation show that all the induction effects of the turbulence together let the screw dynamo threshold slightly, at most by one per cent, rise. The numerical results give also some insights into the action of the individual induction effects of the turbulence.Comment: 15 pages, 7 figures, in GAFD prin

    Alpha-effect dynamos with zero kinetic helicity

    Full text link
    A simple explicit example of a Roberts-type dynamo is given in which the alpha-effect of mean-field electrodynamics exists in spite of point-wise vanishing kinetic helicity of the fluid flow. In this way it is shown that alpha-effect dynamos do not necessarily require non-zero kinetic helicity. A mean-field theory of Roberts-type dynamos is established within the framework of the second-order correlation approximation. In addition numerical solutions of the original dynamo equations are given, that are independent of any approximation of that kind. Both theory and numerical results demonstrate the possibility of dynamo action in the absence of kinetic helicity.Comment: 6 pages, 3 figures, accepted for PR

    Comment on ``The linear instability of magnetic Taylor-Couette flow with Hall effect''

    Full text link
    In the paper we comment on (R\"udiger & Shalybkov, Phys. Rev. E. 69, 016303 (2004) (RS)), the instability of the Taylor--Couette flow interacting with a homogeneous background field subject to Hall effect is studied. We correct a falsely generalizing interpretation of results presented there which could be taken to disprove the existence of the Hall--drift induced magnetic instability described in Rheinhardt and Geppert, Phys. Rev. Lett. 88, 101103. It is shown that in contrast to what is suggested by RS, no additional shear flow is necessary to enable such an instability with a non--potential magnetic background field, whereas for a curl--free one it is. In the latter case, the instabilities found in RS in situations where neither a hydrodynamic nor a magneto--rotational instability exists are demonstrated to be most likely magnetic instead of magnetohydrodynamic. Further, some minor inaccuracies are clarified.Comment: 3 pages, 1 figure; accepted by Physical Review

    The mean electro-motive force, current- and cross-helicity under the influence of rotation, magnetic field and shear

    Full text link
    The mean electromotive force (MEMF) in a rotating stratified magnetohydrodynamical turbulence is studied.Our study rests on the mean-field magnetohydrodynamics framework and τ\tau approximation. We compute the effects of the large-scale magnetic fields (LSMF), global rotation and large-scale shear flow on the different parts of the MEMF (such as α\alpha - effect, turbulent diffusion, turbulent transport, etc.) in an explicit form. The influence of the helical magnetic fluctuations which stem from the small-scale dynamo is taken into account, as well. In the paper, we derive the equation governing the current helicity evolution. It is shown that the joint effect of the differential rotation and magnetic fluctuations in the stratified media can be responsible for the generation, maintenance and redistribution of the current helicity. The implication of the obtained results to astrophysical dynamos is considered as well.Comment: 27 pages, 8 figures, submitted to GAF
    corecore