998 research outputs found
From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality
By means of Dirac procedure, we re-examine Yang's quantized space-time model,
its relation to Snyder's model, the de Sitter special relativity and their
UV-IR duality. Starting from a dimensionless dS_5-space in a 5+1-d Mink-space a
complete Yang model at both classical and quantum level can be presented and
there really exist Snyder's model, the dS special relativity and the duality.Comment: 7 papge
On determination of the geometric cosmological constant from the OPERA experiment of superluminal neutrinos
The recent OPERA experiment of superluminal neutrinos has deep consequences
in cosmology. In cosmology a fundamental constant is the cosmological constant.
From observations one can estimate the effective cosmological constant
which is the sum of the quantum zero point energy
and the geometric cosmological constant . The
OPERA experiment can be applied to determine the geometric cosmological
constant . It is the first time to distinguish the contributions of
and from each other by experiment. The
determination is based on an explanation of the OPERA experiment in the
framework of Special Relativity with de Sitter space-time symmetry.Comment: 7 pages, no figure
Newton-Hooke Limit of Beltrami-de Sitter Spacetime, Principles of Galilei-Hooke's Relativity and Postulate on Newton-Hooke Universal Time
Based on the Beltrami-de Sitter spacetime, we present the Newton-Hooke model
under the Newton-Hooke contraction of the spacetime with respect to the
transformation group, algebra and geometry. It is shown that in Newton-Hooke
space-time, there are inertial-type coordinate systems and inertial-type
observers, which move along straight lines with uniform velocity. And they are
invariant under the Newton-Hooke group. In order to determine uniquely the
Newton-Hooke limit, we propose the Galilei-Hooke's relativity principle as well
as the postulate on Newton-Hooke universal time. All results are readily
extended to the Newton-Hooke model as a contraction of Beltrami-anti-de Sitter
spacetime with negative cosmological constant.Comment: 25 pages, 3 figures; some misprints correcte
Snyder's Quantized Space-time and De Sitter Special Relativity
There is a one-to-one correspondence between Snyder's model in de Sitter
space of momenta and the \dS-invariant special relativity. This indicates that
physics at the Planck length and the scale should be
dual to each other and there is in-between gravity of local \dS-invariance
characterized by a dimensionless coupling constant .Comment: 8 page
Electron-Paramagnetic-Resonance Study of GaAs Grown by Low-Temperature Molecular-Beam Epitaxy
Electron-paramagnetic-resonance results demonstrate an arsenic-antisite related deep donor defect to be the dominant native defect in GaAs layers grown by low-temperature molecular-beam epitaxy (LTMBE). This defect is different from the EL2-related native arsenic-antisite defect. The thermal-equilibrium concentration of 3×1018 cm−3 ionized AsGa defects directly shows the additional presence of unidentified acceptor defects in the same concentration range. The defect distribution in GaAs grown by LTMBE is unstable under thermal annealing at T≳500 °C
Three Kinds of Special Relativity via Inverse Wick Rotation
Since the special relativity can be viewed as the physics in an inverse Wick
rotation of 4-d Euclid space, which is at almost equal footing with the 4-d
Riemann/Lobachevski space, there should be important physics in the inverse
Wick rotation of 4-d Riemann/Lobachevski space. Thus, there are three kinds of
special relativity in de Sitter/Minkowski/anti-de Sitter space at almost equal
footing, respectively. There is an instanton tunnelling scenario in the
Riemann-de Sitter case that may explain why \La be positive and link with the
multiverse.Comment: 3 pages, no figures, to appear in Chin. Phys. Let
Mode locking of vortex matter driven through mesoscopic channels
We investigated the driven dynamics of vortices confined to mesoscopic flow
channels by means of a dc-rf interference technique. The observed mode-locking
steps in the -curves provide detailed information on how the number of rows
and lattice structure in the channel change with magnetic field. Minima in flow
stress occur when an integer number of rows is moving coherently, while maxima
appear when incoherent motion of mixed and row configurations is
predominant. Simulations show that the enhanced pinning at mismatch originates
from quasi-static fault zones with misoriented edge dislocations induced by
disorder in the channel edges.Comment: some minor changes were made, 4 pages, 4 figures, accepted for
publication in Phys. Rev. Let
London equation studies of thin-film superconductors with a triangular antidot lattice
We report on a study of vortex pinning in nanoscale antidot defect arrays in
the context of the London Theory. Using a wire network model, we discretize the
array with a fine mesh, thereby providing a detailed treatment of pinning
phenomena. The use of a fine grid has enabled us to examine both circular and
elongated defects, patterned in the form of a rhombus. The latter display
pinning characteristics superior to circular defects constructed with the
similar area. We calculate pinning potentials for defects containing zero and
single quanta, and we obtain a pinning phase diagram for the second matching
field, .Comment: 10 pages and 14 figure
- …