9,089 research outputs found

    The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories

    Get PDF
    By taking into account the effect of the would be Chern-Simons term, we calculate the quantum correction to the Chern-Simons coefficient in supersymmetric Chern-Simons Higgs theories with matter fields in the fundamental representation of SU(n). Because of supersymmetry, the corrections in the symmetric and Higgs phases are identical. In particular, the correction is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result should be quite general, and have important implication for the more interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are included, 13 pages, 1 figure, latex with revte

    Mass Spectra of N=2 Supersymmetric SU(n) Chern-Simons-Higgs Theories

    Full text link
    An algebraic method is used to work out the mass spectra and symmetry breaking patterns of general vacuum states in N=2 supersymmetric SU(n) Chern-Simons-Higgs systems with the matter fields being in the adjoint representation. The approach provides with us a natural basis for fields, which will be useful for further studies in the self-dual solutions and quantum corrections. As the vacuum states satisfy the SU(2) algebra, it is not surprising to find that their spectra are closely related to that of angular momentum addition in quantum mechanics. The analysis can be easily generalized to other classical Lie groups.Comment: 17 pages, use revte

    Self-dual Maxwell Chern-Simons Solitons In 1+1 Dimensions

    Get PDF
    We study the domain wall soliton solutions in the relativistic self-dual Maxwell Chern-Simons model in 1+1 dimensions obtained by the dimensional reduction of the 2+1 model. Both topological and nontopological self-dual solutions are found in this case. A la BPS dyons here the Bogomol'ny bound on the energy is expressed in terms of two conserved quantities. We discuss the underlying supersymmetry. Nonrelativistic limit of this model is also considered and static, nonrelativistic self-dual soliton solutions are obtained.Comment: 18 pages RevTex, 2 figures included, to appear in Phys. Rev.

    Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 2: User guide

    Get PDF
    This manual explains how to use an Euler based computational method for predicting the airframe/propulsion integration effects for an aft-mounted turboprop transport. The propeller power effects are simulated by the actuator disk concept. This method consists of global flow field analysis and the embedded flow solution for predicting the detailed flow characteristics in the local vicinity of an aft-mounted propfan engine. The computational procedure includes the use of several computer programs performing four main functions: grid generation, Euler solution, grid embedding, and streamline tracing. This user's guide provides information for these programs, including input data preparations with sample input decks, output descriptions, and sample Unix scripts for program execution in the UNICOS environment

    The BPS Domain Wall Solutions in Self-Dual Chern-Simons-Higgs Systems

    Get PDF
    We study domain wall solitons in the relativistic self-dual Chern-Simons Higgs systems by the dimensional reduction method to two dimensional spacetime. The Bogomolny bound on the energy is given by two conserved quantities in a similar way that the energy bound for BPS dyons is set in some Yang-Mills-Higgs systems in four dimensions. We find the explicit soliton configurations which saturate the energy bound and their nonrelativistic counter parts. We also discuss the underlying N=2 supersymmetry.Comment: 16 pages, LaTeX, no figure, a minor change in acknowledgment

    Self-DUal SU(3) Chern-Simons Higgs Systems

    Get PDF
    We explore self-dual Chern-Simons Higgs systems with the local SU(3)SU(3) and global U(1)U(1) symmetries where the matter field lies in the adjoint representation. We show that there are three degenerate vacua of different symmetries and study the unbroken symmetry and particle spectrum in each vacuum. We classify the self-dual configurations into three types and study their properties.Comment: Columbia Preprint CU-TP-635, 19 page

    Replica Placement on Bounded Treewidth Graphs

    Full text link
    We consider the replica placement problem: given a graph with clients and nodes, place replicas on a minimum set of nodes to serve all the clients; each client is associated with a request and maximum distance that it can travel to get served and there is a maximum limit (capacity) on the amount of request a replica can serve. The problem falls under the general framework of capacitated set covering. It admits an O(\log n)-approximation and it is NP-hard to approximate within a factor of o(logn)o(\log n). We study the problem in terms of the treewidth tt of the graph and present an O(t)-approximation algorithm.Comment: An abridged version of this paper is to appear in the proceedings of WADS'1

    One-dimensional transport in polymer nanofibers

    Full text link
    We report our transport studies in quasi one-dimensional (1D) conductors - helical polyacetylene fibers doped with iodine and the data analysis for other polymer single fibers and tubes. We found that at 30 K < T < 300 K the conductance and the current-voltage characteristics follow the power law: G(T) ~ T^alpha with alpha ~ 2.2-7.2 and I(V) ~ V^betta with betta ~ 2-5.7. Both G(T) and I(V) show the features characteristic of 1D systems such as Luttinger liquid or Wigner crystal. The relationship between our results and theories for tunneling in 1D systems is discussed.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Letter
    corecore