357 research outputs found
MaterialVis: Material visualization tool using direct volume and surface rendering techniques
Cataloged from PDF version of article.Visualization of the materials is an indispensable part of their structural analysis. We developed a visualization tool for amorphous as well as crystalline structures, called Material Vis. Unlike the existing tools, Material Vis represents material structures as a volume and a surface manifold, in addition to plain atomic coordinates. Both amorphous and crystalline structures exhibit topological features as well as various defects. Material Vis provides a wide range of functionality to visualize such topological structures and crystal defects interactively. Direct volume rendering techniques are used to visualize the volumetric features of materials, such as crystal defects, which are responsible for the distinct fingerprints of a specific sample. In addition, the tool provides surface visualization to extract hidden topological features within the material. Together with the rich set of parameters and options to control the visualization, Material Vis allows users to visualize various aspects of materials very efficiently as generated by modern analytical techniques such as the Atom Probe Tomography. (C) 2014 Elsevier Inc. All rights reserved
Ordering intermetallic alloys by ion irradiation: a way to tailor magnetic media
Combining He ion irradiation and thermal mobility below 600K, we both trigger
and control the transformation from chemical disorder to order in thin films of
an intermetallic ferromagnet (FePd). Kinetic Monte Carlo simulations show how
the initial directional short range order determines order propagation.
Magnetic ordering perpendicular to the film plane was achieved, promoting the
initially weak magnetic anisotropy to the highest values known for FePd films.
This post-growth treatment should find applications in ultrahigh density
magnetic recording.Comment: 7 pages, 3 Figure
Comparison of Different Parallel Implementations of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model
We show that efficient simulations of the Kardar-Parisi-Zhang interface
growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of
thermally activated diffusion can be realized both on GPUs and modern CPUs. In
this article we present results of different implementations on GPUs using CUDA
and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime
and scaling behavior on different architectures to find optimal solutions for
solving current simulation problems in the field of statistical physics and
materials science.Comment: 14 pages, 8 figures, to be published in a forthcoming EPJST special
issue on "Computer simulations on GPU
Inter- and intragrain currents in bulk melt-grown YBaCuO rings
A simple contactless method suitable to discern between the intergrain
(circular) current, which flows in the thin superconducting ring, and the
intragrain current, which does not cross the weakest link, has been proposed.
At first, we show that the intergrain current may directly be estimated from
the magnetic flux density measured by the Hall sensor positioned
in the special points above/below the ring center. The experimental
and the numerical techniques to determine the value are discussed. Being
very promising for characterization of a current flowing across the joints in
welded YBaCuO rings (its dependencies on the temperature and the external
magnetic field as well as the time dissipation), the approach has been applied
to study corresponding properties of the intra- and intergrain currents flowing
across the -twisted grain boundaries which are frequent in bulk
melt-textured YBaCuO samples. We present experimental data related to the flux
penetration inside a bore of MT YBaCuO rings both in the non-magnetized, virgin
state and during the field reversal. The shielding properties and their
dependence on external magnetic fields are also studied. Besides, we consider
the flux creep effects and their influence on the current re-distribution
during a dwell.Comment: 13 pages, 16 figures (EPS), RevTeX4. In the revised version,
corrections to perturbing effects near the weak links are introduced, one
more figure is added. lin
Influence of vortex-vortex interaction on critical currents across low-angle grain boundaries in YBa2Cu3O7-delta thin films
Low-angle grain boundaries with misorientation angles theta < 5 degrees in
optimally doped thin films of YBCO are investigated by magnetooptical imaging.
By using a numerical inversion scheme of Biot-Savart's law the critical current
density across the grain boundary can be determined with a spatial resolution
of about 5 micrometers. Detailed investigation of the spatially resolved flux
density and current density data shows that the current density across the
boundary varies with varying local flux density. Combining the corresponding
flux and current pattern it is found that there exists a universal dependency
of the grain boundary current on the local flux density. A change in the local
flux density means a variation in the flux line-flux line distance. With this
knowledge a model is developped that explains the flux-current relation by
means of magnetic vortex-vortex interaction.Comment: 7 pages, 14 figure
High magnetic field scales and critical currents in SmFeAs(O,F) crystals: promising for applications
Superconducting technology provides most sensitive field detectors, promising
implementations of qubits and high field magnets for medical imaging and for
most powerful particle accelerators. Thus, with the discovery of new
superconducting materials, such as the iron pnictides, exploring their
potential for applications is one of the foremost tasks. Even if the critical
temperature Tc is high, intrinsic electronic properties might render
applications rather difficult, particularly if extreme electronic anisotropy
prevents effective pinning of vortices and thus severely limits the critical
current density, a problem well known for cuprates. While many questions
concerning microscopic electronic properties of the iron pnictides have been
successfully addressed and estimates point to a very high upper critical field,
their application potential is less clarified. Thus we focus here on the
critical currents, their anisotropy and the onset of electrical dissipation in
high magnetic fields up to 65 T. Our detailed study of the transport properties
of optimally doped SmFeAs(O,F) single crystals reveals a promising combination
of high (>2 x 10^6 A/cm^2) and nearly isotropic critical current densities
along all crystal directions. This favorable intragrain current transport in
SmFeAs(O,F), which shows the highest Tc of 54 K at ambient pressure, is a
crucial requirement for possible applications. Essential in these experiments
are 4-probe measurements on Focused Ion Beam (FIB) cut single crystals with
sub-\mu\m^2 cross-section, with current along and perpendicular to the
crystallographic c-axis and very good signal-to-noise ratio (SNR) in pulsed
magnetic fields. The pinning forces have been characterized by scaling the
magnetically measured "peak effect"
Cells and gene expression programs in the adult human heart
Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and strategies to improve therapeutic opportunities require deeper understanding of the molecular processes of the normal heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavor. Here, using large-scale single cell and nuclei transcriptomic profiling together with state-of-the-art analytical techniques, we characterise the adult human heart cellular landscape covering six anatomical cardiac regions (left and right atria and ventricles, apex and interventricular septum). Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, revealing distinct subsets in the atria and ventricles indicative of diverse developmental origins and specialized properties. Further we define the complexity of the cardiac vascular network which includes clusters of arterial, capillary, venous, lymphatic endothelial cells and an atrial-enriched population. By comparing cardiac cells to skeletal muscle and kidney, we identify cardiac tissue resident macrophage subsets with transcriptional signatures indicative of both inflammatory and reparative phenotypes. Further, inference of cell-cell interactions highlight a macrophage-fibroblast-cardiomyocyte network that differs between atria and ventricles, and compared to skeletal muscle. We expect this reference human cardiac cell atlas to advance mechanistic studies of heart homeostasis and disease
Breast-feeding and risk of epithelial ovarian cancer.
Among women who have had the opportunity to breast-feed, ever breast-feeding and increasing durations of episodes of breast-feeding for each breast-fed child are associated with a decrease in the risk of ovarian cancer independent of numbers of births, which may be strongest for the endometrioid subtype
- …