484 research outputs found

    Two-proton radioactivity and three-body decay. V. Improved momentum distributions

    Get PDF
    Nowadays quantum-mechanical theory allows one to reliably calculate the processes of 2p radioactivity (true three-body decays) and the corresponding energy and angular correlations up to distances of the order of 1000 fm. However, the precision of modern experiments has now become sufficient to indicate some deficiency of the predicted theoretical distributions. In this paper we discuss the extrapolation along the classical trajectories as a method to improve the convergence of the theoretical energy and angular correlations at very large distances (of the order of atomic distances), where only the long-range Coulomb forces are still operating. The precision of this approach is demonstrated using the "exactly" solvable semianalytical models with simplified three-body Hamiltonians. It is also demonstrated that for heavy 2p emitters, the 2p decay momentum distributions can be sensitive to the effect of the screening by atomic electrons. We compare theoretical results with available experimental data.Comment: 13 pages, 18 figure

    Dependence of the Energy Spectrum of UHE Cosmic Rays on the Latitude of an Extensive Air Shower Array

    Full text link
    Several energy spectra of cosmic rays with energies E_0 \geq 10^17 eV measured at the Yakutsk EAS, AGASA, Haverah Park, HiRes, Auger, and SUGAR arrays are considered. It is shown that the fairly good mutual agreement of the spectrum shapes can be achieved if the energy of each spectrum is multiplied by a factor K specific for each spectrum. These factors exhibit a pronounced dependence on the latitude of the above-mentioned arrays.Comment: 4 pages, 4 figure

    Long-Time Asymptotics of Perturbed Finite-Gap Korteweg-de Vries Solutions

    Full text link
    We apply the method of nonlinear steepest descent to compute the long-time asymptotics of solutions of the Korteweg--de Vries equation which are decaying perturbations of a quasi-periodic finite-gap background solution. We compute a nonlinear dispersion relation and show that the x/tx/t plane splits into g+1g+1 soliton regions which are interlaced by g+1g+1 oscillatory regions, where g+1g+1 is the number of spectral gaps. In the soliton regions the solution is asymptotically given by a number of solitons travelling on top of finite-gap solutions which are in the same isospectral class as the background solution. In the oscillatory region the solution can be described by a modulated finite-gap solution plus a decaying dispersive tail. The modulation is given by phase transition on the isospectral torus and is, together with the dispersive tail, explicitly characterized in terms of Abelian integrals on the underlying hyperelliptic curve.Comment: 45 pages. arXiv admin note: substantial text overlap with arXiv:0705.034

    The observation of long-range three-body Coloumb effects in the decay of 16Ne

    Get PDF
    The interaction of an E/AE/A=57.6-MeV 17^{17}Ne beam with a Be target was used to populate levels in 16^{16}Ne following neutron knockout reactions. The decay of 16^{16}Ne states into the three-body 14^{14}O+pp+pp continuum was observed in the High Resolution Array (HiRA). For the first time for a 2p emitter, correlations between the momenta of the three decay products were measured with sufficient resolution and statistics to allow for an unambiguous demonstration of their dependence on the long-range nature of the Coulomb interaction. Contrary to previous experiments, the intrinsic decay width of the 16^{16}Ne ground state was found to be narrow (Γ<60\Gamma<60~keV), consistent with theoretical estimates.Comment: 6 pages, 5 figure

    Outcomes of endovascular treatment of ruptured abdominal aortic aneurysms

    Get PDF
    IntroductionThe successful application of endovascular techniques for the elective repair of abdominal aortic aneurysms (AAAs) has stimulated a strong interest in their possible use in dealing with a long-standing surgical challenge: the ruptured abdominal aortic aneurysm (RAAA). The use of a conventional open procedure to repair ruptured aneurysms is associated with a high operative mortality of 45% to 50%. In this study, we evaluated the current frequency of endovascular repair of RAAAs in four large states and the impact of this technique on patient outcome.MethodsWe examined discharge data sets from 2000 through 2003 from the four states of California, Florida, New Jersey, and New York, whose combined population represents almost a third of the United States population. Proportions and trends were analyzed by χ2 analysis and continuous variables by the Student’s t test.ResultsWe found that since the year 2000, endovascular repair has begun to emerge as a viable treatment option for RAAAs, accounting for the repair of 6.2% of cases in 2003. During the same period, the use of open procedures for RAAAs declined. The overall mortality rate for the 4-year period was significantly lower for endovascular vs open repair (39.3% vs. 47.7%, P = .005). Moreover, compared with open repair, endovascular repair resulted in a significantly lower rate of pulmonary, renal, and bleeding complications. Survival after endovascular repair correlated with hospital experience, as assessed by the overall volume of elective and nonelective endovascular procedures. For endovascular repairs, mortality ranged from 45.9% for small volume hospitals to 26% for large volume hospitals (P = .0011). Volume was also a determinant of mortality for open repairs, albeit to a much lesser extent (51.5% for small volume hospitals, 44.3% for large volume hospitals; P < .0001).ConclusionWe observed a benefit to using endovascular procedures for RAAAs in institutions with significant endovascular experience; however, the analysis of administrative data cannot rule out selection bias as an explanation of better outcomes. These data strongly endorse the need for prospective studies to clarify to what extent the improved survival in RAAA patients is to be attributed to the endovascular approach rather than the selection of low-risk patients

    Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy.

    Get PDF
    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.237

    Cosmic Rays: The Second Knee and Beyond

    Full text link
    We conduct a review of experimental results on Ultra-High Energy Cosmic Rays (UHECR's) including measurements of the features of the spectrum, the composition of the primary particle flux and the search for anisotropy in event arrival direction. We find that while there is a general consensus on the features in the spectrum -- the Second Knee, the Ankle, and (to a lesser extent) the GZK Cutoff -- there is little consensus on the composition of the primaries that accompany these features. This lack of consensus on the composition makes interpretation of the agreed upon features problematic. There is also little direct evidence about potential sources of UHECRs, as early reports of arrival direction anisotropies have not been confirmed in independent measurements.Comment: 46 pages, 30 figures. Topical Review to appear in J. Physics

    Long-distance dispersal explains the bipolar disjunction in Carex macloviana

    Get PDF
    PREMISE OF THE STUDY: The sedge Carex macloviana d’Urv presents a bipolar distribution. To clarify the origin of its distribution, we consider the four main hypotheses: long-distance dispersal (either by mountain hopping or by direct dispersal), vicariance, parallel evolution, and human introduction. METHODS: Phylogenetic, phylogeographic, and divergence time estimation analyses were carried out based on two nuclear ribosomal (ETS and ITS) regions, one nuclear single copy gene (CATP), and three plastid DNA regions (rps 16 and 5′ trn K introns, and psb A-trn H spacer), using Bayesian inference, maximum likelihood, and statistical parsimony. Bioclimatic data were used to characterize the climatic niche of C. macloviana. KEY RESULTS: C arex macloviana constitutes a paraphyletic species, dating back to the Pleistocene (0.62 Mya, 95% highest posterior density: 0.29–1.00 Mya). This species displays strong genetic structure between hemispheres, wiThtwo different lineages in the Southern Hemisphere and limited genetic differentiation in Northern Hemisphere populations. Also, populations from the Southern Hemisphere show a narrower climatic niche wiThregards to the Northern Hemisphere populations. CONCLUSIONS: C arex macloviana reached its bipolar distribution by long-distance dispersal, although it was not possible to determine whether it was caused by mountain hopping or by direct dispersal. While there is some support that Carex macloviana might have colonized the Northern Hemisphere by south-to-norThtranshemisphere dispersal during the Pleistocene, unlike the southwards dispersal pattern inferred for other bipolar Carex L. species, we cannot entirely rule out north-to-souThdispersion.Ministerio de Economía y Competitividad CGL2016-77401-

    Multiparametric determination of genes and their point mutations for identification of beta-lactamases

    Get PDF
    corecore