10,836 research outputs found
Earthquake source parameters of the 2009 Mw 7.8 Fiordland (New Zealand) earthquake from L-band InSAR observations
The 2009 MW7.8 Fiordland (New Zealand) earthquake is the largest to have occurred in New Zealand since the 1931 Mw 7.8 Hawke’s Bay earthquake, 1 000 km to the northwest. In this paper two tracks of ALOS PALSAR interferograms (one ascending and one descending) are used to determine fault geometry and slip distribution of this large earthquake. Modeling the event as dislocation in an elastic half-space suggests that the earthquake resulted from slip on a SSW-NNE orientated thrust fault that is associated with the subduction between the Pacific and Australian Plates, with oblique displacement of up to 6.3 m. This finding is consistent with the preliminary studies undertaken by the USGS using seismic data
On the Integrability, B\"Acklund Transformation and Symmetry Aspects of a Generalized Fisher Type Nonlinear Reaction-Diffusion Equation
The dynamics of nonlinear reaction-diffusion systems is dominated by the
onset of patterns and Fisher equation is considered to be a prototype of such
diffusive equations. Here we investigate the integrability properties of a
generalized Fisher equation in both (1+1) and (2+1) dimensions. A Painlev\'e
singularity structure analysis singles out a special case () as
integrable. More interestingly, a B\"acklund transformation is shown to give
rise to a linearizing transformation for the integrable case. A Lie symmetry
analysis again separates out the same case as the integrable one and
hence we report several physically interesting solutions via similarity
reductions. Thus we give a group theoretical interpretation for the system
under study. Explicit and numerical solutions for specific cases of
nonintegrable systems are also given. In particular, the system is found to
exhibit different types of travelling wave solutions and patterns, static
structures and localized structures. Besides the Lie symmetry analysis,
nonclassical and generalized conditional symmetry analysis are also carried
out.Comment: 30 pages, 10 figures, to appear in Int. J. Bifur. Chaos (2004
Deformation monitoring of high-latitude permafrost region of northeastern China with time series inSAR technique
Abstract. Permafrost distributed in northeast China is the only high-altitude permafrost in China. The deformation monitoring over this permafrost region is of great importance to local climate change and ecological environments. This study focuses on the deformation monitoring of high-latitude permafrost in northeast China with time series InSAR technique. The spatial distribution characteristics, the annual deformation rates and the temporal deformation evolutions of permafrost could be retrieved from multi-temporal InSAR processing with Sentinel-1 TOPS datasets. This work concludes that time series InSAR technique could help to retrieve a comprehensive and reliable permafrost deformation, while a long time-series of displacements facilitated to better understand permafrost kinematics.</p
Synthesis of Silicate-Bridged Heterojunctional SnO2/BiVO4 Nanoplates as Efficient Photocatalysts to Convert CO2 and Degrade 2,4-Dichlorophenol
Bismuth vanadate (BiVO4) is a promising visible‐light responsive photocatalyst, whose photocatalytic activity can be significantly improved by increasing its surface area and utilizing its high‐energy‐level photogenerated electrons effectively. In this work, 2D BiVO4 nanoplates with large specific surface area are successfully fabricated by hydrothermal conversion with the pre‐prepared BiOCl nanosheets as precursors. To improve the photogenerated charge separation, resulted BiVO4 nanoplates are further coupled with nanocrystalline SnO2 to construct heterojunctions, then silicate bridges are introduced between the interfaces of BiVO4 and SnO2. The amount‐optimized silicate‐bridged SnO2/BiVO4 nanocomposite exhibit exceptional visible‐light photocatalytic activities, by ≈7‐time and 4‐time enhancements for CO2 conversion to CH4 and for 2,4‐dichlorophenol degradation, respectively, compared to bare BiVO4 nanoparticles. The significantly enhanced charge separation is verified by steady‐state and time‐resolved surface photovoltage responses and produced hydroxyl radical amounts. Moreover, it is deduced through designed photo‐electrochemical experiments that the introduced SnO2 acts as a proper‐energy platform capable of accepting the photogenerated electrons of BiVO4 nanoplates, and the constructed silicate bridges further facilitate the electron transfer between BiVO4 and SnO2. This work opens up a feasible route to synthesize visible‐light‐driven 2D bismuth‐based nano‐photocatalysts with high photocatalytic activities for efficient fuel production and environmental remediation
- …