295 research outputs found
Field-induced staggered magnetic moment in the quasi-two-dimensional organic Mott insulator -(BEDT-TTF)Cu[N(CN)]Cl
We investigated the magnetism under a magnetic field in the
quasi-two-dimensional organic Mott insulator
-(BEDT-TTF)Cu[N(CN)]Cl through magnetization and
C-NMR measurements. We found that in the nominally paramagnetic phase
(i.e., above N\'eel temperature) the field-induced local moments have a
staggered component perpendicular to the applied field. As a result, the
antiferromagnetic transition well defined at a zero field becomes crossover
under a finite field. This unconventional behavior is qualitatively reproduced
by the molecular-field calculation for Hamiltonian including the exchange,
Dzyaloshinsky-Moriya (DM), and Zeeman interactions. This calculation also
explains other unconventional magnetic features in
-(BEDT-TTF)Cu[N(CN)]Cl reported in the literature. The
present results highlight the importance of the DM interaction in field-induced
magnetism in a nominally paramagnetic phase, especially in low-dimensional spin
systems.Comment: 11 pages, 12 figures, selected for Editors' Suggestion
Periodic Oscillations of Josephson-Vortex Flow Resistance in Oxygen-Deficient Y1Ba2Cu3Ox
We measured the Josephson vortex flow resistance as a function of magnetic
field applied parallel to the ab-planes using annealed Y1Ba2Cu3Ox intrinsic
Josephson junctions having high anisotropy (around 40) by oxygen content
reduction. Periodic oscillations were observed in magnetic fields above 45-58
kOe, corresponding to dense-dilute boundary for Josephson vortex lattice. The
observed period of oscillations, agrees well with the increase of one fluxon
per two junctions (\textit{=}\textit{/2Ls}), may correspond
to formation of a triangular lattice of Josephson vortices as has been reported
by Ooi et al. for highly anisotropic (larger than 200) Bi-2212 intrinsic
Josephson junctions.Comment: 5 pages, 4 figure
Theory of the beta-type Organic Superconductivity under Uniaxial Compression
We study theoretically the shift of the superconducting transition
temperature (Tc) under uniaxial compression in beta-type organic
superconductors, beta-(BEDT-TTF)2I3 and beta-(BDA-TTP)2X[X=SbF6,AsF6], in order
to clarify the electron correlation, the spin frustration and the effect of
dimerization. The transfer integrals are calculated by the extended Huckel
method assuming the uniaxial strain and the superconducting state mediated by
the spin fluctuation is solved using Eliashberg's equation with the
fluctuation-exchange approximation. The calculation is carried out on both the
dimerized (one-band) and nondimerized (two-band) Hubbard models. We have found
that (i) the behavior of Tc in beta-(BEDT-TTF)2I3 with a stronger dimerization
is well reproduced by the dimer model, while that in weakly dimerized
beta-BDA-TTP salts is rather well reproduced by the two-band model, and (ii)
the competition between the spin frustration and the effect induced by the
fluctuation is important in these materials, which causes nonmonotonic shift of
Tc against uniaxial compression.Comment: 18 pages, 16 figures, 2 tabl
Interlayer Coherence in the and Bilayer Quantum Hall States
We have measured the Hall-plateau width and the activation energy of the
bilayer quantum Hall (BLQH) states at the Landau-level filling factor
and 2 by tilting the sample and simultaneously changing the electron density in
each quantum well. The phase transition between the commensurate and
incommensurate states are confirmed at and discovered at . In
particular, three different BLQH states are identified; the compound
state, the coherent commensurate state, and the coherent incommensurate state.Comment: 4 pages including 5 figure
Phase Transition in \nu=2 Bilayer Quantum Hall State
The Hall-plateau width and the activation energy were measured in the bilayer
quantum Hall state at filling factor \nu=2, 1 and 2/3, by changing the total
electron density and the density ratio in the two quantum wells. Their behavior
are remarkably different from one to another. The \nu=1 state is found stable
over all measured range of the density difference, while the \nu=2/3$ state is
stable only around the balanced point. The \nu=2 state, on the other hand,
shows a phase transition between these two types of the states as the electron
density is changed.Comment: 5 pages including figures, RevTe
Comparison of the Fermi-surface topologies of kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated analogue
We have measured details of the quasi one-dimensional Fermi-surface sections
in the organic superconductor kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated
analogue using angle-dependent millimetre-wave techniques. There are
significant differences in the corrugations of the Fermi surfaces in the
deuterated and undeuterated salts. We suggest that this is important in
understanding the inverse isotope effect, where the superconducting transition
temperature rises on deuteration. The data support models for superconductivity
which invoke electron-electron interactions depending on the topological
properties of the Fermi surface
Evidence of Andreev bound states as a hallmark of the FFLO phase in -(BEDT-TTF)Cu(NCS)
Superconductivity is a quantum phenomena arising, in its simplest form, from
pairing of fermions with opposite spin into a state with zero net momentum.
Whether superconductivity can occur in fermionic systems with unequal number of
two species distinguished by spin, atomic hyperfine states, flavor, presents an
important open question in condensed matter, cold atoms, and quantum
chromodynamics, physics. In the former case the imbalance between spin-up and
spin-down electrons forming the Cooper pairs is indyced by the magnetic field.
Nearly fifty years ago Fulde, Ferrell, Larkin and Ovchinnikov (FFLO) proposed
that such imbalanced system can lead to exotic superconductivity in which pairs
acquire finite momentum. The finite pair momentum leads to spatially
inhomogeneous state consisting of of a periodic alternation of "normal" and
"superconducting" regions. Here, we report nuclear magnetic resonance (NMR)
measurements providing microscopic evidence for the existence of this new
superconducting state through the observation of spin-polarized quasiparticles
forming so-called Andreev bound states.Comment: 6 pages, 5 fig
Pairing Symmetry Competition in Organic Superconductors
A review is given on theoretical studies concerning the pairing symmetry in
organic superconductors. In particular, we focus on (TMTSF)X and
-(BEDT-TTF)X, in which the pairing symmetry has been extensively
studied both experimentally and theoretically. Possibilities of various pairing
symmetry candidates and their possible microscopic origin are discussed. Also
some tests for determining the actual pairing symmtery are surveyed.Comment: 16 pages, 8 figures, to be published in J. Phys. Soc. Jpn., special
issue on "Organic Conductors
Electronic Collective Modes and Superconductivity in Layered Conductors
A distinctive feature of layered conductors is the presence of low-energy
electronic collective modes of the conduction electrons. This affects the
dynamic screening properties of the Coulomb interaction in a layered material.
We study the consequences of the existence of these collective modes for
superconductivity. General equations for the superconducting order parameter
are derived within the strong-coupling phonon-plasmon scheme that account for
the screened Coulomb interaction. Specifically, we calculate the
superconducting critical temperature Tc taking into account the full
temperature, frequency and wave-vector dependence of the dielectric function.
We show that low-energy plasmons may contribute constructively to
superconductivity. Three classes of layered superconductors are discussed
within our model: metal-intercalated halide nitrides, layered organic materials
and high-Tc oxides. In particular, we demonstrate that the plasmon contribution
(electronic mechanism) is dominant in the first class of layered materials. The
theory shows that the description of so-called ``quasi-two-dimensional
superconductors'' cannot be reduced to a purely 2D model, as commonly assumed.
While the transport properties are strongly anisotropic, it remains essential
to take into account the screened interlayer Coulomb interaction to describe
the superconducting state of layered materials.Comment: Final version (minor changes) 14 pages, 6 figure
Molecular characterization of a novel ssRNA ourmia-like virus from the rice blast fungus Magnaporthe oryzae
In this study we characterize a novel positive and single stranded RNA (ssRNA) mycovirus isolated from the rice field isolate of Magnaporthe oryzae Guy11. The ssRNA contains a single open reading frame (ORF) of 2,373 nucleotides in length and encodes an RNA-dependent RNA polymerase (RdRp) closely related to ourmiaviruses (plant viruses) and ourmia-like mycoviruses. Accordingly, we name this virus Magnaporthe oryzae ourmia-like virus 1 (MOLV1). Although phylogenetic analysis suggests that MOLV1 is closely related to ourmia and ourmia-like viruses, it has some features never reported before within the Ourmiavirus genus. 3' RLM-RACE (RNA ligase-mediated rapid amplification of cDNA ends) and extension poly(A) tests (ePAT) suggest that the MOLV1 genome contains a poly(A) tail whereas the three cytosine and the three guanine residues present in 5' and 3' untranslated regions (UTRs) of ourmia viruses are not observed in the MOLV1 sequence. The discovery of this novel viral genome supports the hypothesis that plant pathogenic fungi may have acquired this type of viruses from their host plants
- …