106,687 research outputs found
Nonuniversal Effects in the Homogeneous Bose Gas
Effective field theory predicts that the leading nonuniversal effects in the
homogeneous Bose gas arise from the effective range for S-wave scattering and
from an effective three-body contact interaction. We calculate the leading
nonuniversal contributions to the energy density and condensate fraction and
compare the predictions with results from diffusion Monte Carlo calculations by
Giorgini, Boronat, and Casulleras. We give a crude determination of the
strength of the three-body contact interaction for various model potentials.
Accurate determinations could be obtained from diffusion Monte Carlo
calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te
A new look at decomposition of turbulence forcing field and the structural response
Measured cross-spectrum of a turbulence field usually shows some decay in the statistical correlation in addition to convection at a characteristic velocity. It is shown that a decaying turbulence can be decomposed into frozen-pattern components thus permitting a simpler way to calculate the structural response. This procedure also provides a relationship whereby the measured input spectra can be incorporated. The theory is applied to an infinite beam which is backed on one side by a fluid filled cavity and is exposed on the other side by the turbulence excitation. The effect of the free stream velocity is also taken into consideration
Vibroacoustic response of structures and perturbation Reynolds stress near structure-turbulence interface
The interaction between a turbulent flow and certain types of structures which respond to its excitation is investigated. One-dimensional models were used to develop the basic ideas applied to a second model resembling the fuselage construction of an aircraft. In the two-dimensional case a simple membrane, with a small random variation in the membrane tension, was used. A decaying turbulence was constructed by superposing infinitely many components, each of which is convected as a frozen pattern at a different velocity. Structure-turbulence interaction results are presented in terms of the spectral densities of the structural response and the perturbation Reynolds stress in the fluid at the vicinity of the interface
Dynamic response of some tentative compliant wall structures to convected turbulence fields
Some tentative compliant wall structures designed for possible skin friction drag reduction are investigated. Among the structural models considered is a ribbed membrane backed by polyurethane or PVS plastisol. This model is simplified as a beam placed on a viscoelastic foundation as well as on a set of evenly spaced supports. The total length of the beam may be either finite or infinite, and the supports may be either rigid or elastic. Another structural model considered is a membrane mounted over a series of pretensioned wires, also evenly spaced, and the entire membrane is backed by an air cavity. The forcing pressure field is idealized as a frozen random pattern convected downstream at a characteristic velocity. The results are given in terms of the frequency response functions of the system, the spectral density of the structural motion, and the spectral density of the boundary layer pressure including the effect of structural motion. These results are used in a parametric study of structural configurations capable of generating favorable wave lengths, wave amplitudes, and wave speeds in the structural motion for potential drag reduction
Effective hadronic Lagrangian for charm mesons
An effective hadronic Lagrangian including the charm mesons is introduced to
study their interactions in hadronic matter. Using coupling constants that are
determined either empirically or by the SU(4) symmetry, we have evaluated the
absorption cross sections of and the scattering cross sections of
and by and mesons.Comment: 5 pages, 4 eps figures, presented at Strangeness 2000, Berkeley. Uses
iopart.cl
- …