215 research outputs found

    Enzymatic reduction of azo and indigoid compounds

    Get PDF
    A customer- and environment-friendly method for the decolorization azo dyes was developed. Azoreductases could be used both to bleach hair dyed with azo dyes and to reduce dyes in vat dyeing of textiles. A new reduced nicotinamide adenine dinucleotide-dependent azoreductase of Bacillus cereus, which showed high potential for reduction of these dyes, was purified using a combination of ammonium sulfate precipitation and chromatography and had a molecular mass of 21.5 kDa. The optimum pH of the azoreductase depended on the substrate and was within the range of pH 6 to 7, while the maximum temperature was reached at 40°C. Oxygen was shown to be an alternative electron acceptor to azo compounds and must therefore be excluded during enzymatic dye reduction. Biotransformation of the azo dyes Flame Orange and Ruby Red was studied in more detail using UV-visible spectroscopy, high-performance liquid chromatography, and mass spectrometry (MS). Reduction of the azo bonds leads to cleavage of the dyes resulting in the cleavage product 2-amino-1,3 dimethylimidazolium and N∼1∼,N∼1∼-dimethyl-1,4-benzenediamine for Ruby Red, while only the first was detected for Flame Orange because of MS instability of the expected 1,4-benzenediamine. The azoreductase was also found to reduce vat dyes like Indigo Carmine (C.I. Acid Blue 74). Hydrogen peroxide (H2O2) as an oxidizing agent was used to reoxidize the dye into the initial form. The reduction and oxidation mechanism of Indigo Carmine was studied using UV-visible spectroscopy

    In situ nutrient assays of periphyton growth in a lowland Costa Rican stream

    Full text link
    Nutrient limitation of primary production was experimentally assessed using an in situ bioassay technique in the Quebrada Salto, a third-order tropical stream draining the northern foothills of the Cordillera Central in Costa Rica. Bioassays employed artificial substrata enriched with nutrients that slowly diffuse through an agar-sand matrix (Pringle & Bowers, 1984). Multiple comparisons of regression coefficients, describing chlorophyll- a accrual through time for different nutrient treatments, revealed positive micronutrient effect(s). Micronutrient treatment combinations (Fe, B, Mn, Zn, Co, Mo, EDTA), supplemented with and without nitrate and phosphate, exhibited significantly greater chlorophyll- a accrual over all other treatments (P < 0.05), supporting over three times that of the control after 14-d of substratum colonization. Neither of the major nutrients (N or P) produced a significant stimulation, although the N treatment displayed ≃50% more chlorophyll- a than the control after 14-d. Similarly, Si, EDTA, and Si + N + P treatments did not exhibit chlorophyll- a response curves that were significantly different from the control. During the experiment, mean NH 4 -N and (NO 2 + NO 3 )-N concentrations in the Salto were 2.0 µM (28.6 µg · l −1 ) and 7.2 µM (100.2 µg · l −1 ), respectively. High concentrations of PO 4 -P ( = 2.0 µM; 60.9 µg · l −1 ) and TP ( = 3.0 µM; 94.0 µg · l −1 ) were also found, and consequently low molar N:P ratios = 4.7). Despite the potential for N limitation in the system, both N and P appear to be at growth saturating levels. This may be due to micronutrient limitation and/or light limitation of periphyton growth in densely shaded upstream portions of the stream.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42872/1/10750_2004_Article_BF00008489.pd

    Pathways of propionate degradation by enriched methanogenic cultures

    No full text
    corecore