84 research outputs found
C. PRESL) at the transcriptional level.
This paper investigates differences in gene expression among the two Thlaspi caerulescens ecotypes La Calamine (LC) and Lellingen (LE) that have been shown to differ in metal tolerance and metal uptake. LC originates from a metalliferous soil and tolerates higher metal concentrations than LE which originates from a non-metalliferous soil. The two ecotypes were treated with different levels of zinc in solution culture, and differences in gene expression were assessed through application of a cDNA microarray consisting of 1,700 root and 2,700 shoot cDNAs. Hybridisation of root and shoot cDNA from the two ecotypes revealed a total of 257 differentially expressed genes. The regulation of selected genes was verified by quantitative reverse transcriptase polymerase chain reaction. Comparison of the expression profiles of the two ecotypes suggests that LC has a higher capacity to cope with reactive oxygen species and to avoid the formation of peroxynitrite. Furthermore, increased transcripts for the genes encoding for water channel proteins could explain the higher Zn tolerance of LC compared to LE. The higher Zn tolerance of LC was reflected by a lower expression of the genes involved in disease and defence mechanisms. The results of this study provide a valuable set of data that may help to improve our understanding of the mechanisms employed by plants to tolerate toxic concentrations of metal in the soil
Mouse Chromosome 3
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46995/1/335_2004_Article_BF00648421.pd
In vitro correction of G.T mispairs to G.C pairs in nuclear extracts from human cells
In differentiated cells, only a specific subset of genes is expressed. Recently, several genes have been shown to be transcriptionally inactivated by methylation of cytosine residues, mainly within their promoter sequences. Spontaneous hydrolytic deamination of 5-methylcytosine to thymine, which has been estimated to generate up to 12 G.T mismatched base pairs in the human genome per day, could have a deleterious effect on the expression of such genes. We recently reported that mammalian cells possess a specific repair pathway, which counteracts the mutagenic effects of this deamination by correcting G.T mismatches almost exclusively to G.C pairs. We show here that, in nuclear extracts from HeLa cells, this repair is mediated by excision of the aberrant thymidine monophosphate residue, followed by gap-filling to generate a G.C pair. We also provide preliminary evidence that the initial step of this process involves a DNA glycosylase
- …