99 research outputs found

    Role of low-ll component in deformed wave functions near the continuum threshold

    Get PDF
    The structure of deformed single-particle wave functions in the vicinity of zero energy limit is studied using a schematic model with a quadrupole deformed finite square-well potential. For this purpose, we expand the single-particle wave functions in multipoles and seek for the bound state and the Gamow resonance solutions. We find that, for the Kπ=0+K^{\pi}=0^{+} states, where KK is the zz-component of the orbital angular momentum, the probability of each multipole components in the deformed wave function is connected between the negative energy and the positive energy regions asymptotically, although it has a discontinuity around the threshold. This implies that the Kπ=0+K^{\pi}=0^{+} resonant level exists physically unless the l=0l=0 component is inherently large when extrapolated to the well bound region. The dependence of the multipole components on deformation is also discussed

    Relativistic Effects in the Electromagnetic Current at GeV Energies

    Get PDF
    We employ a recent approach to the non-relativistic reduction of the electromagnetic current operator in calculations of electronuclear reactions. In contrast to the traditional scheme, where approximations are made for the transferred momentum, transferred energy and initial momentum of the struck nucleon in obtaining an on-shell inspired form for the current, we treat the problem exactly for the transferred energy and transferred momentum. We calculate response functions for the reaction 2H(e,ep)n^2H(e,e'p)n at CEBAF (TJNAF) energies and find large relativistic corrections. We also show that in Plane Wave Impulse Approximation, it is always possible to use the full operator, and we present a comparison of such a limiting case with the results incorporating relativistic effects to the first order in the initial momentum of the struck nucleon.Comment: 31 pages, 8 figures, Revte

    Transmission Properties of the oscillating delta-function potential

    Full text link
    We derive an exact expression for the transmission amplitude of a particle moving through a harmonically driven delta-function potential by using the method of continued-fractions within the framework of Floquet theory. We prove that the transmission through this potential as a function of the incident energy presents at most two real zeros, that its poles occur at energies nω+εn\hbar\omega+\varepsilon^* (0<Re(ε)<ω0<Re(\varepsilon^*)<\hbar\omega), and that the poles and zeros in the transmission amplitude come in pairs with the distance between the zeros and the poles (and their residue) decreasing with increasing energy of the incident particle. We also show the existence of non-resonant "bands" in the transmission amplitude as a function of the strength of the potential and the driving frequency.Comment: 21 pages, 12 figures, 1 tabl

    Neutron charge radius and the Dirac equation

    Full text link
    We consider the Dirac equation for a finite-size neutron in an external electric field. We explicitly incorporate Dirac-Pauli form factors into the Dirac equation. After a non-relativistic reduction, the Darwin-Foldy term is cancelled by a contribution from the Dirac form factor, so that the only coefficient of the external field charge density is e/6rEn2e/6 r^2_{En}, i. e. the root mean square radius associated with the electric Sachs form factor . Our result is similar to a recent result of Isgur, and reconciles two apparently conflicting viewpoints about the use of the Dirac equation for the description of nucleons.Comment: 7 pages, no figures, to appear in Physical Review

    Quark-hadron duality in a relativistic, confining model

    Get PDF
    Quark-hadron duality is an interesting and potentially very useful phenomenon, as it relates the properly averaged hadronic data to a perturbative QCD result in some kinematic regions. While duality is well established experimentally, our current theoretical understanding is still incomplete. We employ a simple model to qualitatively reproduce all the features of Bloom-Gilman duality as seen in electron scattering. In particular, we address the role of relativity, give an explicit analytic proof of the equality of the hadronic and partonic scaling curves, and show how the transition from coherent to incoherent scattering takes place.Comment: This paper is dedicated to the memory of our collaborator Nathan Isgur. (34 pages, 13 figures

    Privaros: A Framework for Privacy-Compliant Delivery Drones

    Full text link
    We present Privaros, a framework to enforce privacy policies on drones. Privaros is designed for commercial delivery drones, such as the ones that will likely be used by Amazon Prime Air. Such drones visit a number of host airspaces, each of which may have different privacy requirements. Privaros provides an information flow control framework to enforce the policies of these hosts on the guest delivery drones. The mechanisms in Privaros are built on top of ROS, a middleware popular in many drone platforms. This paper presents the design and implementation of these mechanisms, describes how policies are specified, and shows that Privaros's policy specification can be integrated with India's Digital Sky portal. Our evaluation shows that a drone running Privaros can robustly enforce various privacy policies specified by hosts, and that its core mechanisms only marginally increase communication latency and power consumption
    corecore