72,956 research outputs found
Zeta Potential of Modified Multi-walled Carbon Nanotubes in Presence of poly (vinyl alcohol) Hydrogel
The main objective of this study is investigate the behavior of the Zeta Potential of the MWCNT modified with SDS(Sodium Dodecyl Sulfate) and CTAB(Cetyl Tetraethyl Ammonium Bromide) in presence of PVA. Full hydrolyzed PVA was used. As a result, adding PVA in the CNT solution led to decrease the Zeta Potential. The Zeta Potential of suspended colloid varied from 42.00mV to 6.48mV and -45.00mV to -6.4mV at 1.5% concentration of PVA; according with the changing pH, the Zeta Potential dropped to near zero at pH 3 and 11. The pH and PVA has strong influence in the reduction of ZP of MWCNT solution. MWCNT-PVA solution with 33.30mV, -35.69mV at 0.01% of PVA was exposed under AC field; a uniform coat was obtained, with the SDS-MWCNT-PVA solution.National Natural Science Foundation of China Project (Grant No.51073024), the Royal Society-NSFC international joint project (Grant No.51111130207) and Beijing Municipal Science and Technology Plan Projects (No. Z111103066611005)
Exchange Bias Induced by the Fe3O4 Verwey transition
We present a study of the exchange bias in different configurations of V2O3
thin films with ferromagnetic layers. The exchange bias is accompanied by a
large vertical shift in the magnetization. These effects are only observed when
V2O3 is grown on top of Ni80Fe20 permalloy. The magnitude of the vertical shift
is as large as 60% of the total magnetization which has never been reported in
any system. X-Ray diffraction studies show that the growth conditions promote
the formation of a ferrimagnetic Fe3O4 interlayer. The change in the easy
magnetization axis of Fe3O4 across the Verwey transition at 120 K is correlated
with the appearance of exchange bias and vertical shift in magnetization. Both
phenomena disappear above 120 K, indicating for the first time a direct
relationship between the magnetic signature of the Verwey transition and
exchange bias.Comment: Accepted for publication Physical Review
A Robust AFPTAS for Online Bin Packing with Polynomial Migration
In this paper we develop general LP and ILP techniques to find an approximate
solution with improved objective value close to an existing solution. The task
of improving an approximate solution is closely related to a classical theorem
of Cook et al. in the sensitivity analysis for LPs and ILPs. This result is
often applied in designing robust algorithms for online problems. We apply our
new techniques to the online bin packing problem, where it is allowed to
reassign a certain number of items, measured by the migration factor. The
migration factor is defined by the total size of reassigned items divided by
the size of the arriving item. We obtain a robust asymptotic fully polynomial
time approximation scheme (AFPTAS) for the online bin packing problem with
migration factor bounded by a polynomial in . This answers
an open question stated by Epstein and Levin in the affirmative. As a byproduct
we prove an approximate variant of the sensitivity theorem by Cook at el. for
linear programs
Mott transition and collective charge pinning in electron doped Sr2IrO4
We studied the in-plane dynamic and static charge conductivity of electron
doped Sr2IrO4 using optical spectroscopy and DC transport measurements. The
optical conductivity indicates that the pristine material is an indirect
semiconductor with a direct Mott-gap of 0.55 eV. Upon substitution of 2% La per
formula unit the Mott-gap is suppressed except in a small fraction of the
material (15%) where the gap survives, and overall the material remains
insulating. Instead of a zero energy mode (or Drude peak) we observe a soft
collective mode (SCM) with a broad maximum at 40 meV. Doping to 10% increases
the strength of the SCM, and a zero-energy mode occurs together with metallic
DC conductivity. Further increase of the La substitution doesn't change the
spectral weight integral up to 3 eV. It does however result in a transfer of
the SCM spectral weight to the zero-energy mode, with a corresponding reduction
of the DC resistivity for all temperatures from 4 to 300 K. The presence of a
zero-energy mode signals that at least part of the Fermi surface remains
ungapped at low temperatures, whereas the SCM appears to be caused by pinning a
collective frozen state involving part of the doped electrons
Junctions and thin shells in general relativity using computer algebra I: The Darmois-Israel Formalism
We present the GRjunction package which allows boundary surfaces and
thin-shells in general relativity to be studied with a computer algebra system.
Implementing the Darmois-Israel thin shell formalism requires a careful
selection of definitions and algorithms to ensure that results are generated in
a straight-forward way. We have used the package to correctly reproduce a wide
variety of examples from the literature. We present several of these
verifications as a means of demonstrating the packages capabilities. We then
use GRjunction to perform a new calculation - joining two Kerr solutions with
differing masses and angular momenta along a thin shell in the slow rotation
limit.Comment: Minor LaTeX error corrected. GRjunction for GRTensorII is available
from http://astro.queensu.ca/~grtensor/GRjunction.htm
The rigged Hilbert space approach to the Lippmann-Schwinger equation. Part I
We exemplify the way the rigged Hilbert space deals with the
Lippmann-Schwinger equation by way of the spherical shell potential. We
explicitly construct the Lippmann-Schwinger bras and kets along with their
energy representation, their time evolution and the rigged Hilbert spaces to
which they belong. It will be concluded that the natural setting for the
solutions of the Lippmann-Schwinger equation--and therefore for scattering
theory--is the rigged Hilbert space rather than just the Hilbert space.Comment: 34 pages, 1 figur
Influence of carbon on intraband scattering in Mg(B1-xCx)2
We report data on the Hall coefficient (RH) of the carbon substituted
Mg(B1-xCx)2 single crystals with x in the range from 0 to 0.1. The temperature
dependences of RH obtained for the substituted crystals differ systematically
at low temperatures, but all of them converge to the value of 1.8 x 10^-10
m^3/C at room temperature. The RH(T) data together with results of the
thermoelectric power and electrical resistivity measurements are interpreted
within a quasi-classical transport approach, where the presence of four
different conducting sheets is considered. The main influence of the carbon
substitution on the transport properties in the normal state is associated with
enhanced scattering rates, rather than modified concentration of charge
carriers. Presumably the carbon substitution increases the electron-impurity
scattering mainly in the pi band.Comment: 16 pages, 3 figure
Energy landscapes, ideal glasses, and their equation of state
Using the inherent structure formalism originally proposed by Stillinger and
Weber [Phys. Rev. A 25, 978 (1982)], we generalize the thermodynamics of an
energy landscape that has an ideal glass transition and derive the consequences
for its equation of state. In doing so, we identify a separation of
configurational and vibrational contributions to the pressure that corresponds
with simulation studies performed in the inherent structure formalism. We
develop an elementary model of landscapes appropriate to simple liquids which
is based on the scaling properties of the soft-sphere potential complemented
with a mean-field attraction. The resulting equation of state provides an
accurate representation of simulation data for the Lennard-Jones fluid,
suggesting the usefulness of a landscape-based formulation of supercooled
liquid thermodynamics. Finally, we consider the implications of both the
general theory and the model with respect to the so-called Sastry density and
the ideal glass transition. Our analysis shows that a quantitative connection
can be made between properties of the landscape and a simulation-determined
Sastry density, and it emphasizes the distinction between an ideal glass
transition and a Kauzmann equal-entropy condition.Comment: 11 pages, 3 figure
- …