4,832 research outputs found

    Impact of ETO propellants on the aerothermodynamic analyses of propulsion components

    Get PDF
    The operating conditions and the propellant transport properties used in Earth-to-Orbit (ETO) applications affect the aerothermodynamic design of ETO turbomachinery in a number of ways. Some aerodynamic and heat transfer implications of the low molecular weight fluids and high Reynolds number operating conditions on future ETO turbomachinery are discussed. Using the current SSME high pressure fuel turbine as a baseline, the aerothermodynamic comparisons are made for two alternate fuel turbine geometries. The first is a revised first stage rotor blade designed to reduce peak heat transfer. This alternate design resulted in a 23 percent reduction in peak heat transfer. The second design concept was a single stage rotor to yield the same power output as the baseline two stage rotor. Since the rotor tip speed was held constant, the turbine work factor doubled. In this alternate design, the peak heat transfer remained the same as the baseline. While the efficiency of the single stage design was 3.1 points less than the baseline two stage turbine, the design was aerothermodynamically feasible, and may be structurally desirable

    Overview of the solar dynamic ground test demonstration program

    Get PDF
    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LeRC) vacuum facility. An aerospace industry/ government team is working together to design, fabricate, build, and test a complete SD system. This paper reviews the goals and status of the SD GTD program. A description of the SD system includes key design features of the system, subsystems, and components as reported at the Critical Design Review (CDR)

    Update of the 2 Kw Solar Dynamic Ground Test Demonstration Program

    Get PDF
    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the operation of a complete 2 kW, SD system in a simulated space environment at a NASA Lewis Research Center (LeRC) thermal-vacuum facility. This paper reviews the goals and status of the SD GTD program. A brief description of the SD system identifying key design features of the system, subsystems, and components is included. An aerospace industry/government team is working together to design, fabricate, assemble, and test a complete SD system

    Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis

    Get PDF
    A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha

    The distance to the young cluster NGC 7129 and its age

    Full text link
    The dust cloud TGU H645 P2 and embedded in it young open cluster NGC 7129 are investigated using the results of medium-band photometry of 159 stars in the Vilnius seven-colour system down to V = 18.8 mag. The photometric data were used to classify about 50 percent of the measured stars in spectral and luminosity classes. The extinction A_V vs. distance diagram for the 20x20 arcmin area is plotted for 155 stars with two-dimensional classification from the present and the previous catalogues. The extinction values found range between 0.6 and 3.4 mag. However, some red giants, located in the direction of the dense parts of the cloud, exhibit the infrared extinction equivalent up to A_V = 13 mag. The distance to the cloud (and the cluster) is found to be 1.15 kpc (the true distance modulus 10.30 mag). For determining the age of NGC 7129, a luminosity vs. temperature diagram for six cluster members of spectral classes B3 to A1 was compared with the Pisa pre-main-sequence evolution tracks and the Palla birthlines. The cluster can be as old as about 3 Myr, but star forming continues till now as witnessed by the presence in the cloud of many younger pre-main-sequence objects identified with photometry from 2MASS, Spitzer and WISE infrared surveys.Comment: 8 pages, 6 fugures, full Table 1 online. Accepted for publication in MNRAS on 2013 November 3

    A one-sided Prime Ideal Principle for noncommutative rings

    Full text link
    Completely prime right ideals are introduced as a one-sided generalization of the concept of a prime ideal in a commutative ring. Some of their basic properties are investigated, pointing out both similarities and differences between these right ideals and their commutative counterparts. We prove the Completely Prime Ideal Principle, a theorem stating that right ideals that are maximal in a specific sense must be completely prime. We offer a number of applications of the Completely Prime Ideal Principle arising from many diverse concepts in rings and modules. These applications show how completely prime right ideals control the one-sided structure of a ring, and they recover earlier theorems stating that certain noncommutative rings are domains (namely, proper right PCI rings and rings with the right restricted minimum condition that are not right artinian). In order to provide a deeper understanding of the set of completely prime right ideals in a general ring, we study the special subset of comonoform right ideals.Comment: 38 page

    The Gravitational Lensing in Redshift-space Correlation Functions of Galaxies and Quasars

    Get PDF
    The gravitational lensing, as well as the velocity field and the cosmological light-cone warp, changes the observed correlation function of high-redshift objects. We present an analytical expression of 3D correlation function, simultaneously including those three effects. When two objects are separated over several hundreds Mpc along a line of sight, the observed correlation function is dominated by the effect of gravitational lensing rather than the intrinsic clustering. For a canonical lambda-CDM model, the lensing signals in the galaxy-galaxy and galaxy-QSO correlations are beyond noise levels in large-scale redshift surveys like the Sloan Digital Sky Survey.Comment: 10 pages, 1 figure, submitted to ApJ

    Density Evolution in the New Modified Chaplygin Gas Model

    Full text link
    In this paper, we have considered new modified Chaplygin gas (NMCG) model which interpolates between radiation at early stage and Λ\LambdaCDM at late stage. This model is regarded as a unification of dark energy and dark matter (with general form of matter). We have derived the density parameters from the equation of motion for the interaction between dark energy and dark matter. Also we have studied the evolution of the various components of density parameters.Comment: 6 Latex pages, 4 figures, RevTex styl
    corecore