646 research outputs found

    Magnetoresistance of a quantum dot with spin-active interfaces

    Full text link
    We study the zero-bias magnetoresistance MR of an interacting quantum dot connected to two ferromagnetic leads and capacitively coupled to a gate voltage source Vg. We investigate the effects of the spin-activity of the contacts between the dot and the leads by introducing an effective exchange field in an Anderson model. This spin-activity makes easier negative MR effects, and can even lead to a giant MR effect with a sign tunable with Vg. Assuming a twofold orbital degeneracy, our approach allows to interpret in an interacting picture the MR(Vg) measured by S. Sahoo et al. [Nature Phys. 2, 99 (2005)] in single wall carbon nanotubes with ferromagnetic contacts. If this experiment is repeated on a larger Vg-range, we expect that the MR(Vg) oscillations are not regular like in the presently available data, due to Coulomb interactions.Comment: 9 pages, 6 figures, to appear in Phys. Rev.

    Hall effect of quasi-hole gas in organic single-crystal transistors

    Full text link
    Hall effect is detected in organic field-effect transistors, using appropriately shaped rubrene (C42H28) single crystals. It turned out that inverse Hall coefficient, having a positive sign, is close to the amount of electric-field induced charge upon the hole accumulation. The presence of the normal Hall effect means that the electromagnetic character of the surface charge is not of hopping carriers but resembles that of a two-dimensional hole-gas system

    Current distribution inside Py/Cu lateral spin-valve device

    Full text link
    We have investigated experimentally the non-local voltage signal (NLVS) in the lateral permalloy (Py)/Cu/Py spin valve devices with different width of Cu stripes. We found that NLVS strongly depends on the distribution of the spin-polarized current inside Cu strip in the vicinity of the Py-detector. To explain these data we have developed a diffusion model describing spatial (3D) distribution of the spin-polarized current in the device. The results of our calculations show that NLVS is decreased by factor of 10 due to spin flip-scattering occurring at Py/Cu interface. The interface resistivity on Py/Cu interface is also present, but its contribution to reduction of NLVS is minor. We also found that most of the spin-polarized current is injected within the region 30 nm from Py-injector/Cu interface. In the area at Py-detector/Cu interface, the spin-polarized current is found to flow mainly close on the injector side, with 1/e exponential decay in the magnitude within the distance 80 nm.Comment: 10 pages, 14 figure

    First-principles investigation of spin polarized conductance in atomic carbon wire

    Full text link
    We analyze spin-dependent energetics and conductance for one dimensional (1D) atomic carbon wires consisting of terminal magnetic (Co) and interior nonmagnetic (C) atoms sandwiched between gold electrodes, obtained employing first-principles gradient corrected density functional theory and Landauer's formalism for conductance. Wires containing an even number of interior carbon atoms are found to be acetylenic with sigma-pi bonding patterns, while cumulene structures are seen in wires containing odd number of interior carbon atoms, as a result of strong pi-conjugation. Ground states of carbon wires containing up to 13 C atoms are found to have anti-parallel spin configurations of the two terminal Co atoms, while the 14 C wire has a parallel Co spin configuration in the ground state. The stability of the anti-ferromagnetic state in the wires is ascribed to a super-exchange effect. For the cumulenic wires this effect is constant for all wire lengths. For the acetylenic wires, the super-exchange effect diminishes as the wire length increases, going to zero for the atomic wire containing 14 carbon atoms. Conductance calculations at the zero bias limit show spin-valve behavior, with the parallel Co spin configuration state giving higher conductance than the corresponding anti-parallel state, and a non-monotonic variation of conductance with the length of the wires for both spin configurations.Comment: revtex, 6 pages, 5 figure

    Spin dependent transport of ``nonmagnetic metal/zigzag nanotube encapsulating magnetic atoms/nonmagnetic metal'' junctions

    Full text link
    Towards a novel magnetoresistance (MR) device with a carbon nanotube, we propose ``nonmagnetic metal/zigzag nanotube encapsulating magnetic atoms/nonmagnetic metal'' junctions. We theoretically investigate how spin-polarized edges of the nanotube and the encapsulated magnetic atoms influence on transport. When the on-site Coulomb energy divided by the magnitude of transfer integral, U/tU/|t|, is larger than 0.8, large MR effect due to the direction of spins of magnetic atoms, which has the magnitude of the MR ratio of about 100%, appears reflecting such spin-polarized edges.Comment: 4 pages, 3 figures, accepted for publication in Synth. Metal

    Transport in two dimensional periodic magnetic fields

    Full text link
    Ballistic transport properties in a two dimensional electron gas are studied numerically, where magnetic fields are perpendicular to the plane of two dimensional electron systemsand periodically modulated both in xx and yy directions. We show that there are three types of trajectories of classical electron motions in this system; chaotic, pinned and runaway trajectories. It is found that the runaway trajectories can explain the peaks of magnetoresistance as a function of external magnetic fields, which is believed to be related to the commensurability effect between the classical cyclotron diameter and the period of magnetic modulation. The similarity with and difference from the results in the antidot lattice are discussed.Comment: 4 pages, 7 figures, to appear in J. Phys. Soc. Jpn., vol. 67 (1998) Novembe
    corecore