54 research outputs found
10-kJ PW Laser for the FIREX-I Program
A 10-kJ PW laser (LFEX) is under construction for the
FIREX-I program. This paper reports a design overview of LFEX, the
technological development of a large-aperture arrayed amplifier with
modified four-pass architecture, wavefront correction, a large-aperture
Faraday rotator with a superconducting magnet, a new pulse compressor
arrangement, and focus control
RhoD regulates cytoskeletal dynamics via the actin nucleation-promoting factor WASp homologue associated with actin Golgi membranes and microtubules
The Rho GTPases have mainly been studied in association with their roles in the regulation of actin filament organization. These studies have shown that the Rho GTPases are essential for basic cellular processes, such as cell migration, contraction, and division. In this paper, we report that RhoD has a role in the organization of actin dynamics that is distinct from the roles of the better-studied Rho members Cdc42, RhoA, and Rac1. We found that RhoD binds the actin nucleation–promoting factor WASp homologue associated with actin Golgi membranes and microtubules (WHAMM), as well as the related filamin A–binding protein FILIP1. Of these two RhoD-binding proteins, WHAMM was found to bind to the Arp2/3 complex, while FILIP1 bound filamin A. WHAMM was found to act downstream of RhoD in regulating cytoskeletal dynamics. In addition, cells treated with small interfering RNAs for RhoD and WHAMM showed increased cell attachment and decreased cell migration. These major effects on cytoskeletal dynamics indicate that RhoD and its effectors control vital cytoskeleton-driven cellular processes. In agreement with this notion, our data suggest that RhoD coordinates Arp2/3-dependent and FLNa-dependent mechanisms to control the actin filament system, cell adhesion, and cell migration
Genetic Variants of the Renin Angiotensin System: Effects on Atherosclerosis in Experimental Models and Humans
The renin angiotensin system (RAS) has profound effects on atherosclerosis development in animal models, which is partially complimented by evidence in the human disease. Although angiotensin II was considered to be the principal effector of the RAS, a broader array of bioactive angiotensin peptides have been identified that have increased the scope of enzymes and receptors in the RAS. Genetic interruption of the synthesis of these peptides has not been extensively performed in experimental or human studies. A few studies demonstrate that interruption of a component of the angiotensin peptide synthesis pathway reduces experimental lesion formation. The evidence in human studies has not been consistent. Conversely, genetic manipulation of the RAS receptors has demonstrated that AT1a receptors are profoundly involved in experimental atherosclerosis. Few studies have reported links of genetic variants of angiotensin II receptors to human atherosclerotic diseases. Further genetic studies are needed to define the role of RAS in atherosclerosis
“GENBU”-Laser Development with Cryogenic Yb:YAG Ceramic for Fusion Energy Reactor Driver
"A new diode-pumped laser fusion driver has been conceptually designed. The output power is 1.2 MJ and 0.1 MJ for a compression laser and a heating laser, respectively, at 16 Hz repetition rate and 17% electrical-optical efficiency. We have proposed two new technologies into the laser system to improve its laser output characteristics dramatically. One is cryogenic Yb:YAG ceramics as a laser material and the other is a large-aperture active-mirror as an amplifier architecture. An 1 kJ near-infrared laser is a basic unit for both compression and heating lasers, and its demonstration will become a milestone of the new driver. Recently, “GENBU”-laser has been designed in details for not only a milestone of the new reactor driver but also a tool for advanced application fields. A joule-class laser system of “GENBU-Kid” is under construction for power-scaling up to 1 kJ.
Automated continuous quantitative measurement of proximal airways on dynamic ventilation CT: initial experience using an ex vivo porcine lung phantom
Tsuneo Yamashiro,1 Maho Tsubakimoto,1 Yukihiro Nagatani,2 Hiroshi Moriya,3 Kotaro Sakuma,3 Shinsuke Tsukagoshi,4 Hiroyasu Inokawa,5 Tatsuya Kimoto,5 Ryuichi Teramoto,6 Sadayuki Murayama1 1Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa; 2Department of Radiology, Shiga University of Medical Science, Otsu; 3Department of Radiology, Ohara General Hospital, Fukushima; 4CT Systems Division, 5Center for Medical Research and Development, Toshiba Medical Systems Corporation, Otawara; 6Corporate Manufacturing Engineering Center, Toshiba Corporation, Yokohama, Japan Background: The purpose of this study was to evaluate the feasibility of continuous quantitative measurement of the proximal airways, using dynamic ventilation computed tomography (CT) and our research software. Methods: A porcine lung that was removed during meat processing was ventilated inside a chest phantom by a negative pressure cylinder (eight times per minute). This chest phantom with imitated respiratory movement was scanned by a 320-row area-detector CT scanner for approximately 9 seconds as dynamic ventilatory scanning. Obtained volume data were reconstructed every 0.35 seconds (total 8.4 seconds with 24 frames) as three-dimensional images and stored in our research software. The software automatically traced a designated airway point in all frames and measured the cross-sectional luminal area and wall area percent (WA%). The cross-sectional luminal area and WA% of the trachea and right main bronchus (RMB) were measured for this study. Two radiologists evaluated the traceability of all measurable airway points of the trachea and RMB using a three-point scale. Results: It was judged that the software satisfactorily traced airway points throughout the dynamic ventilation CT (mean score, 2.64 at the trachea and 2.84 at the RMB). From the maximum inspiratory frame to the maximum expiratory frame, the cross-sectional luminal area of the trachea decreased 17.7% and that of the RMB 29.0%, whereas the WA% of the trachea increased 6.6% and that of the RMB 11.1%. Conclusion: It is feasible to measure airway dimensions automatically at designated points on dynamic ventilation CT using research software. This technique can be applied to various airway and obstructive diseases. Keywords: computed tomography, dynamic ventilation CT, airway, luminal area, wall area percent, COP
- …