108 research outputs found

    Event Analysis of Pulse-reclosers in Distribution Systems Through Sparse Representation

    Full text link
    The pulse-recloser uses pulse testing technology to verify that the line is clear of faults before initiating a reclose operation, which significantly reduces stress on the system components (e.g. substation transformers) and voltage sags on adjacent feeders. Online event analysis of pulse-reclosers are essential to increases the overall utility of the devices, especially when there are numerous devices installed throughout the distribution system. In this paper, field data recorded from several devices were analyzed to identify specific activity and fault locations. An algorithm is developed to screen the data to identify the status of each pole and to tag time windows with a possible pulse event. In the next step, selected time windows are further analyzed and classified using a sparse representation technique by solving an l1-regularized least-square problem. This classification is obtained by comparing the pulse signature with the reference dictionary to find a set that most closely matches the pulse features. This work also sheds additional light on the possibility of fault classification based on the pulse signature. Field data collected from a distribution system are used to verify the effectiveness and reliability of the proposed method.Comment: Accepted in: 19th International Conference on Intelligent System Application to Power Systems (ISAP), San Antonio, TX, 201

    Analyzing intramolecular vibrational energy redistribution via the overlap intensity-level velocity correlator

    Full text link
    Numerous experimental and theoretical studies have established that intramolecular vibrational energy redistribution (IVR) in isolated molecules has a heirarchical tier structure. The tier structure implies strong correlations between the energy level motions of a quantum system and its intensity-weighted spectrum. A measure, which explicitly accounts for this correaltion, was first introduced by one of us as a sensitive probe of phase space localization. It correlates eigenlevel velocities with the overlap intensities between the eigenstates and some localized state of interest. A semiclassical theory for the correlation is developed for systems that are classically integrable and complements earlier work focusing exclusively on the chaotic case. Application to a model two dimensional effective spectroscopic Hamiltonian shows that the correlation measure can provide information about the terms in the molecular Hamiltonian which play an important role in an energy range of interest and the character of the dynamics. Moreover, the correlation function is capable of highlighting relevant phase space structures including the local resonance features associated with a specific bright state. In addition to being ideally suited for multidimensional systems with a large density of states, the measure can also be used to gain insights into the phase space transport and localization. It is argued that the overlap intensity-level velocity correlation function provides a novel way of studying vibrational energy redistribution in isolated molecules. The correlation function is ideally suited to analyzing the parametric spectra of molecules in external fields.Comment: 16 pages, 13 figures (low resolution

    Localization properties of groups of eigenstates in chaotic systems

    Full text link
    In this paper we study in detail the localized wave functions defined in Phys. Rev. Lett. {\bf 76}, 1613 (1994), in connection with the scarring effect of unstable periodic orbits in highly chaotic Hamiltonian system. These functions appear highly localized not only along periodic orbits but also on the associated manifolds. Moreover, they show in phase space the hyperbolic structure in the vicinity of the orbit, something which translates in configuration space into the structure induced by the corresponding self--focal points. On the other hand, the quantum dynamics of these functions are also studied. Our results indicate that the probability density first evolves along the unstable manifold emanating from the periodic orbit, and localizes temporarily afterwards on only a few, short related periodic orbits. We believe that this type of studies can provide some keys to disentangle the complexity associated to the quantum mechanics of these kind of systems, which permits the construction of a simple explanation in terms of the dynamics of a few classical structures.Comment: 9 pages, 8 Postscript figures (low resolution). For high resolution versions of figs http://www.tandar.cnea.gov.ar/~wisniack/ To appear in Phys. Rev.

    Tunneling Mechanism due to Chaos in a Complex Phase Space

    Get PDF
    We have revealed that the barrier-tunneling process in non-integrable systems is strongly linked to chaos in complex phase space by investigating a simple scattering map model. The semiclassical wavefunction reproduces complicated features of tunneling perfectly and it enables us to solve all the reasons why those features appear in spite of absence of chaos on the real plane. Multi-generation structure of manifolds, which is the manifestation of complex-domain homoclinic entanglement created by complexified classical dynamics, allows a symbolic coding and it is used as a guiding principle to extract dominant complex trajectories from all the semiclassical candidates.Comment: 4 pages, RevTeX, 6 figures, to appear in Phys. Rev.

    Signatures of Dynamical Tunneling in the Wave function of a Soft-Walled Open Microwave Billiard

    Full text link
    Evidence for dynamical tunneling is observed in studies of the transmission, and wave functions, of a soft-walled microwave cavity resonator. In contrast to previous work, we identify the conditions for dynamical tunneling by monitoring the evolution of the wave function phase as a function of energy, which allows us to detect the tunneling process even under conditions where its expected level splitting remains irresolvable.Comment: 5 pages, 5 figure

    Symmetry Decomposition of Potentials with Channels

    Full text link
    We discuss the symmetry decomposition of the average density of states for the two dimensional potential V=x2y2V=x^2y^2 and its three dimensional generalisation V=x2y2+y2z2+z2x2V=x^2y^2+y^2z^2+z^2x^2. In both problems, the energetically accessible phase space is non-compact due to the existence of infinite channels along the axes. It is known that in two dimensions the phase space volume is infinite in these channels thus yielding non-standard forms for the average density of states. Here we show that the channels also result in the symmetry decomposition having a much stronger effect than in potentials without channels, leading to terms which are essentially leading order. We verify these results numerically and also observe a peculiar numerical effect which we associate with the channels. In three dimensions, the volume of phase space is finite and the symmetry decomposition follows more closely that for generic potentials --- however there are still non-generic effects related to some of the group elements

    Stability of quantum motion and correlation decay

    Full text link
    We derive a simple and general relation between the fidelity of quantum motion, characterizing the stability of quantum dynamics with respect to arbitrary static perturbation of the unitary evolution propagator, and the integrated time auto-correlation function of the generator of perturbation. Surprisingly, this relation predicts the slower decay of fidelity the faster decay of correlations is. In particular, for non-ergodic and non-mixing dynamics, where asymptotic decay of correlations is absent, a qualitatively different and faster decay of fidelity is predicted on a time scale 1/delta as opposed to mixing dynamics where the fidelity is found to decay exponentially on a time-scale 1/delta^2, where delta is a strength of perturbation. A detailed discussion of a semi-classical regime of small effective values of Planck constant is given where classical correlation functions can be used to predict quantum fidelity decay. Note that the correct and intuitively expected classical stability behavior is recovered in the classical limit hbar->0, as the two limits delta->0 and hbar->0 do not commute. In addition we also discuss non-trivial dependence on the number of degrees of freedom. All the theoretical results are clearly demonstrated numerically on a celebrated example of a quantized kicked top.Comment: 32 pages, 10 EPS figures and 2 color PS figures. Higher resolution color figures can be obtained from authors; minor changes, to appear in J.Phys.A (March 2002
    corecore