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We have revealed that the barrier-tunneling process in nonintegrable systems is strongly linked to chaos in
complex phase space by investigating a simple scattering map model. The semiclassical wave function repro-
duces complicated features of tunneling perfectly and it enables us to solve all the reasons why those features
appear in spite of absence of chaos on the real plane. Multigeneration structure of manifolds, which is the
manifestation of complex-domain homoclinic entanglement created by complexified classical dynamics, allows
a symbolic coding and it is used as a guiding principle to extract dominant complex trajectories from all the
semiclassical candidates.
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Tunneling phenomenon is peculiar to quantum mechanics
and no counterparts exist in classical mechanics. Features of
tunneling are nevertheless strongly influenced by the under-
lying classical dynamics@1–6#. In particular, chaotic features
appearing in tunneling have been paid attention to in connec-
tion with real-domain chaos@2–4#.

A promising approach to see the connection of these two
opposite concepts is to carry out the complex semiclassical
analysis, which allows us to describe and interpret the tun-
neling phenomenon in terms of complex classical trajectories
@7#. It has been shown that the complex semiclassical theory
can successfully be applied even in classically chaotic sys-
tems and the origin of characteristic structures of the wave
function inherent in chaotic systems is explained by the com-
plex classical dynamics@5#. A significant role of almost real-
domain homoclinic trajectories in the energy barrier tunnel-
ing has been pointed out based on the trace formula approach
@8#. Recently, it is found that fringed pattern appears in the
wave function of the two-dimensional barrier tunneling prob-
lem as a result of interference between oscillatory Lagrang-
ian manifold @9#. They have shown a detailed scenario de-
scribing how such interference emerges in accordance with
the divergent movement of singularities on the complex
t-plane.

In the present Rapid Communication, we shall report the
strong connection between the barrier-tunneling process in
nonintegrable systems and thechaos in complex phase space
by analyzing a simple scattering map model. In particular, it
will be shown that even though the real-domain classical
dynamics exhibits no chaos, i.e., null topological entropy,
complex-domain chaos can make tunneling process compli-
cated. Moreover, our present analysis suggests that chaotic
tunneling can be understood in a unified manner from the
viewpoint of complex-domain chaos not only in case of dy-
namical but also energy-barrier tunneling processes.

We first introduce a scattering map model which is de-
scribed by the following Hamiltonian

H~q,p,t !5T~p!1V~q!(
n

d~ t2n!, ~1a!

T~p!5p2/2, V~q!5k exp~2gq2! ~k,g.0!. ~1b!

A set of classical equations of motion is given as
(qj 11 ,pj 11)5@qj 1T8(pj ),pj2V8(qj 11)#, where prime
denotes a differentiation with respect to the corresponding
argument. Note that the real-valued dynamics of our scatter-
ing map does not create chaos in contrast to the maps defined
on the bounded phase space. This is because the system has
only single periodic orbit, (q,p)5(0,0), and thus the topo-
logical entropy of the system is null. As shown in the inset of
Fig. 1, the stable and unstable manifolds of the fixed point
(0,0), W s(0,0) andW u(0,0), oscillate without creating ho-
moclinic or heteroclinic intersections. Any manifold initially
put on the real plane is fully stretched but not folded per-
fectly so that it leaves away to infinity alongW u(0,0).

An incident wave packet is put in the asymptotic region.
The initial kinetic energy is given far less than the potential
barrier located around the origin. The form of initial wave
packet is given by

FIG. 1. u^quUnuC&u2 for n510 calculated quantum-
mechanically (\51, s510, k5500,g50.005, qa52123, pa

523). An incident wave packet is set in the side ofq,0. The
center of mass has been already reflected by the potential barrier at
this time step.~Inset! W s(0,0) andW u(0,0) merely oscillating
without homoclinic entanglement.
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^quC&5C expF2
~q2qa!2

2\s2 GexpF2 i
pa~qa22q!

2\ G , ~2!

where C is the normalization constant,s is the squeezing
parameter, andqa ,pa are configuration and momentum of
the center of mass, respectively.

u^quUnuC&u2 for n510 is shown in Fig. 1, whereU de-
notes the unitary operator of one-step quantum propagation.
Although the mean energy of the wave packet is less than the
barrier height, we can observe various structures such as
crossover of amplitude, existence of plateau regions, erratic
oscillation on them, cliffs and so on. Similar structures are
also found in case of dynamical tunneling in the presence of
chaos@5#, and we hereafter call such characteristic structures
‘‘plateau-cliff structure’’ as a representative of typical fea-
tures which are completely absent in one-dimensional tun-
neling. However, an essential difference of the present situ-
ation from the previous one is that the plateau-cliff structure
in the scattering model emerges under the situation where the
real-valued classical dynamics creates no chaos.

In order to carry out complex semiclassical analysis, we
first prepare a pair of new canonical variables asQ[(q
2 ips2)/(A2s), P[(p2 iqs22)/(A2s21), and some nota-
tions as Q0[Q(q0 ,p0), P0[P(q0 ,p0), Qa[Q(qa ,pa),
Pa[P(qa ,pa). The n-step quantum propagator is repre-
sented as then-fold multiple integral, and the saddle point
evaluation is applied to yield the classical equations. Semi-
classical Van Vleck’s formula forn-step wave function takes
a form as

^qnuUnuC&'A (
cl.orb.

U ]2W

]qn]P0
U1/2

exp
i

\ FS2
f

2 G , ~3!

where the sum is over complex classical orbits satisfying the
boundary condition, Imqn50, which is necessary since we
here observe our wave function as a function ofqn . A de-
notes the normalization factor, andS,f are the action and
the Maslov index of each contributing orbit respectively.W
is the generating function which gives canonical transforma-
tions such that]W/]qn5pn , ]W/]P052Q0.

In order to represent the complex orbits which can con-
tribute to the semiclassical propagator~3!, we introduce a
variable,DQ0[Q0 2 Qa . Using DQ0 the contributing or-
bits in Eq. ~3! are represented as a set of initial conditions
Mn[$DQ0uDQ0PC, Im qn(Qa1DQ0 ,Pa)50%.

A typical pattern of theMn-set is shown in Fig. 2~a!.
Each string, which we call the branch hereafter, represents an
individual classical orbit appearing in the semiclassical sum
~3! and a single string covers the whole range (2`,1`) of
the finalqn .

Though the morphology of the set is quite elusive, when
sufficiently blowing up any local area with lots of branches
accumulated, one can find the self-similar structure sche-
matically demonstrated in Fig. 2~b!. At the center, a chain-
shaped structure is developed in the horizontal direction. A
sequence of chains with finer scale are arranged in both sides
of the previous chain, and does the same around any of those
smaller chains, and so on. Then it may be natural to assign a

notion of thegenerationto each chain as shown in the figure.
Higher generations sprout from lower generations almost
vertically, and we call these self-similar configurations the
multigeneration structure~MGS!.

We can discuss significant branches embedded in the hi-
erarchical structure, which determine the semiclassical wave
function ~3!. The amplitude of an individual contribution in
the semiclassical sum is almost governed by ImS, an imagi-
nary action, which implies that the orbit whose imaginary
part is the smallest survives as the final semiclassical contri-
bution. Furthermore, the amount of ImS is roughly esti-
mated by how deep each trajectory passes through the com-
plex domain. This means that the history of each trajectory in
complex domain is a primary factor concerning its weight in
the semiclassical sum. It implies that the semiclassical wave
function could not be reproduced until one finds how those
orbits with the smallest imaginary actions behave, since it is
almost impossible to extract significant trajectories out of a
huge number of branches without any guiding principle.

To this end, we begin with the precise definition of MGS,
which is given by considering thestable and unstable mani-
folds in complex phase space, in particular analytical con-
tinuation of the stable manifoldW s(0,0). In order to connect
MGS with W s(0,0) in complex space, we first introduce the
normalized coordinate onW s(0,0). LetF be the conjugation

FIG. 2. ~a! Mn-set forn510. Those branches which we finally
take into account for the reproduction of the wave function are
represented by the line styles such as dash, bold dash, bold solid,
bold dot, bold dashed dot and bold dashed dot dot. Each line style
corresponds to the one in Fig. 5.~b! Schematic representation for
MGS. Blown-up figures of the second and third generations display
the self similarity of MGS. Solid squares represent the intersection
points withW s(0,0).
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map from C to W s(0,0), satisfying the relationF̃(j)
[(F21)(F)F(j)5l21j, where l denotes the largest ei-
genvalue with respect to the saddle point (0,0)@10#.

The normalized coordinatej is used in Figs. 3~a! and 3~b!
to represent the intersection betweenW s(0,0) andI, the
initial value plane consisting of the whole (q,p)’s corre-
sponding to$DQ0uDQ0PC%. Comparing both figures, one
can recognize the intersection pattern has self-similarity. The
intersection betweenW u(0,0) andW s(0,0) shows almost
the same self-similar pattern, which implies thehomoclinic
entanglementof the stable manifold in complex phase space
@11#. This means that null topological entropy in the real
domain does not exclude existence of chaos in the complex
domain.

The generation can be assigned to each point on
I ù W s(0,0). Supposer be the minimum distance on
j-plane from (0,0) to intersection points
F21@I ù W s(0,0)#, and let D[$jPCuuju<r %. Here the
normalized coordinate plane is decomposed into disjointed
annuli as

F̃ m@D\F̃~D !#ùF̃ n@D\F̃~D !#5f ~mÞn!, ~4!

t
nPZ

F̃ n@D\F̃~D !#5 C \$0%. ~5!

Then each annulusF̃ n@D\F̃(D)# plays a role specifying the
individual generation. More precisely, if a point of
I ù W s(0,0) is contained inF$F̃ 2n@D\F̃(D)#%, we say the
point belongs to thenth generation.

Next we show that each point ofI ù W s(0,0) can be
associated with a single chain structure on theMn-set, which
is shown as the hatched zone in Fig. 3~c!. The final strings of

those displayed in the figure after ten iterations of our map
are projected in real phase space in Fig. 3~d!. The hatched
part in Fig. 3~c! develops to the bold curves in Fig. 3~d!,
which almost coincide with the real-domain unstable mani-
fold, W u(0,0)ùR2.

This behavior is not limited to a particular chain-shaped
structure, but every chain structure in theMn-set becomes
close toW u(0,0)ùR2. Chain-shaped structure is always cre-
ated around each point ofI ù W s(0,0), the reason of which
can be explained by describing the process of time evolution
of a tiny domain containing a point ofI ù W s(0,0). Such a
domain is guided to the real phase space byW s(0,0) and
then smeared overW u(0,0). Details will be reported in Ref.
@11#. In this way, we can find one-to-one relation between a
single chain structure in theMn-set and an intersection point
of I ù W s(0,0). Since, as explained above, the latter forms
the self-similar or generation structure reflecting the ho-
moclinic entanglement of the stable manifold, MGS of the
Mn-set is controlled by that of the stable manifold in com-
plex phase space.

Since we have defined the generation in such a way, the
orbits belonging to higher generations usually gain larger
Im S, since, taking roundabout ways in the complex chaotic
region, they approach the origin later than those of lower
generations. In order to extract significant trajectories out of
them, it is essential to use symbolic dynamics in complex
phase space.

In the present case, a nice symbolic space can be orga-
nized as the union of a single-element set$O% and a direct
product of the sign of Req, Im q, and a multiplicity index
nPN. The symbol ‘‘O’’ describes monotonic convergence
to the origin (0,0), and the indexn appears as a reflection of
the transcendental property of the potential function such
that our initial-value problem has infinite number of solu-
tions. Since frequent flipping of the sign or large modulus of
q-component, which is represented as largen, results in large
imaginary actions, our final principle turns out to extract the
sequences of symbols out of MGS which represent those
orbits with no sign flipping and minimalq-components with
n51. It considerably reduces our task in searching signifi-
cant complex orbits only to linear dependence of the time
step, which otherwise exponentially diverges. More detailed
explanations to construct symbolic dynamics in the complex-
domain chaos will be reported elsewhere@11#. In particular,
a complex He´non map is analyzed to elucidate the relation
between the MGS and Julia set@12#.

Figure 4 displays the behaviors of intersection points in
MGS as a function of time, together with the coding se-
quences. Figure 4~a! shows a typical behavior such that both
Req and Imq oscillate in an erratic manner for some initial
time steps and eventually approach the origin. Figure 4~b!
shows such an orbit trapped by complex period-2 orbits as
evidence of regular behavior embedded in MGS. Such itin-
erating or oscillating complex orbits contribute in principle,
however, their amplitudes are much smaller than those of
orbits with Req and Imq decreasing monotonically to zero,
as shown in Fig. 4~c!.

The semiclassical wave function evaluated finally takes
the form in Fig. 5. The agreement with the quantal one

FIG. 3. ~a! The intersection points belonging to the 1st, 2nd, or
3rd generation plotted onW s(0,0). ~b! Magnification of ~a!, dis-
playing the 1st and 2nd generations.~c! Chain-shaped manifolds in
the Mn-set drawn schematically.~d! The final strings of those dis-
played in~c! after ten iterations of our map projected in real phase
space. The hatched part in~c! develops to the bold curves, which
almost coincide with the real-domain unstable manifold,
W u(0,0)ùR2.
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shown in Fig. 1 is excellent. The origin of plateau-cliff struc-
ture is understood by resolving the superposed semiclassical
function into contributions from individual generations. The
plateau-cliff structure is created because each semiclassical
component itself has a flat plateau accompanied by sharp
drop and interference between branches forming the genera-
tion give rise to erratic oscillation on the plateau. Disconti-
nuity of amplitude, as found inq'2168,2207,2224, etc.
are caused by the Stokes phenomenon which is inevitable in
the saddle point method, and is treated in an appropriate way
@13#.

It should be stressed that the most crucial step in our
semiclassical analysis is to decode embedded information in

MGS which reflects complex homoclinic entanglement. This
means that emergence of the entanglement in complex phase
space is an essential ingredient in our description. We think
it is a quite general event in chaotic systems, and thus so-
called plateau-cliff structure, which is typically observed pat-
tern of tunneling in the presence of chaos@5#, must appear as
a manifestation of such complex structures. We can therefore
expect that, whether energetic or dynamical, there is a com-
mon semiclassical mechanism of the tunneling phenomena in
chaotic map systems, which should be attributed to the struc-
ture of entanglement, typically observed as MGS.
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FIG. 4. Behaviors of intersection points in MGS. Solid lines as
Re q, and broken lines as Imq. The sequences of symbols coding
them also attached. These are the trajectories~a! showing stochastic
motions,~b! temporarily attracted by a complex period-2 orbit, and
~c! approaching real phase space monotonically.

FIG. 5. The semiclassical wave function for ten time steps re-
solved into contributions from different generations. Each compo-
nent corresponds to the branches with the same line styles in Fig.
2~a!. The thin dashed lines represent those branches which are
dominated, in each coordinateq, by some other branches.~Inset!
The semiclassical wave function finally obtained by the superposi-
tion of these contributions.
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