86 research outputs found
Magnetic Domain Observation using Spin-Polarized Scanning Electron Microscopy
A new apparatus, spin-polarized scanning electron microscope (SEM), has been developed. This is a unique apparatus, which forms images by electron spin polarization. By using this device, magnetic domain images can be obtained because secondary electrons from ferromagnetic samples are polarized representing the magnetization of the sample originating point. This method provides new capabilities, such as magnetic contrast independent of surface morphology, detection of magnetization direction, and high spatial resolution
Evola: Ortholog database of all human genes in H-InvDB with manual curation of phylogenetic trees
Orthologs are genes in different species that evolved from a common ancestral gene by speciation. Currently, with the rapid growth of transcriptome data of various species, more reliable orthology information is prerequisite for further studies. However, detection of orthologs could be erroneous if pairwise distance-based methods, such as reciprocal BLAST searches, are utilized. Thus, as a sub-database of H-InvDB, an integrated database of annotated human genes (http://h-invitational.jp/), we constructed a fully curated database of evolutionary features of human genes, called ‘Evola’. In the process of the ortholog detection, computational analysis based on conserved genome synteny and transcript sequence similarity was followed by manual curation by researchers examining phylogenetic trees. In total, 18 968 human genes have orthologs among 11 vertebrates (chimpanzee, mouse, cow, chicken, zebrafish, etc.), either computationally detected or manually curated orthologs. Evola provides amino acid sequence alignments and phylogenetic trees of orthologs and homologs. In ‘dN/dS view’, natural selection on genes can be analyzed between human and other species. In ‘Locus maps’, all transcript variants and their exon/intron structures can be compared among orthologous gene loci. We expect the Evola to serve as a comprehensive and reliable database to be utilized in comparative analyses for obtaining new knowledge about human genes. Evola is available at http://www.h-invitational.jp/evola/
Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana
We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ~32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene
Association between high-dose erythropoiesis-stimulating agents, inflammatory biomarkers, and soluble erythropoietin receptors
<p>Abstract</p> <p>Background</p> <p>High-dose erythropoiesis-stimulating agents (ESA) for anemia of chronic kidney disease (CKD) have been associated with adverse clinical outcomes and do not always improve erythropoiesis. We hypothesized that high-dose ESA requirement would be associated with elevated inflammatory biomarkers, decreased adipokines, and increased circulating, endogenous soluble erythropoietin receptors (sEpoR).</p> <p>Methods</p> <p>A cross-sectional cohort of anemic 32 CKD participants receiving ESA were enrolled at a single center and cytokine profiles, adipokines, and sEpoR were compared between participants stratified by ESA dose requirement (usual-dose darbepoetin-α (< 1 μg/kg/week) and high-dose (≥1 μg/kg/week)).</p> <p>Results</p> <p>Baseline characteristics were similar between groups; however, hemoglobin was lower among participants on high-dose (1.4 μg/kg/week) vs usual-dose (0.5 μg/kg/week) ESA.</p> <p>In adjusted analyses, high-dose ESA was associated with an increased odds for elevations in c-reactive protein and interleukin-6 (p < 0.05 for both). There was no correlation between high-dose ESA and adipokines. Higher ESA dose correlated with higher levels of sEpoR (r<sub>s </sub>= 0.39, p = 0.03). In adjusted analyses, higher ESA dose (per μcg/kg/week) was associated with a 53% greater odds of sEpoR being above the median (p < 0.05).</p> <p>Conclusion</p> <p>High-dose ESA requirement among anemic CKD participants was associated with elevated inflammatory biomarkers and higher levels of circulating sEpoR, an inhibitor of erythropoiesis. Further research confirming these findings is warranted.</p> <p>Trial registration</p> <p>Clinicaltrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT00526747">NCT00526747</a></p
Small Changes in the Primary Structure of Transportan 10 Alter the Thermodynamics and Kinetics of its Interaction with Phospholipid Vesicles
ABSTRACT: The kinetics and thermodynamics of binding of transportan 10 (tp10) and four of its variants to phospholipid vesicles, and the kinetics of peptide-induced dye efflux, were compared. Tp10 is a 21-residue, amphipathic, cationic, cell-penetrating peptide similar to helical antimicrobial peptides. The tp10 variants examined include amidated and free peptides, and replacements of tyrosine by tryptophan. Carboxy-terminal amidation or substitution of tryptophan for tyrosine enhance binding and activity. The Gibbs energies of peptide binding to membranes determined experimentally and calculated from the interfacial hydrophobicity scale are in good agreement. The Gibbs energy for insertion into the bilayer core was calculated using hydrophobicity scales of residue transfer from water to octanol and to the membrane/ water interface. Peptide-induced efflux becomes faster as the Gibbs energies for binding and insertion of the tp10 variants decrease. If anionic lipids are included, binding and efflux rate increase, as expected because all tp10 variants are cationic and an electrostatic component is added. Whether the most important effect of peptide amidation is the change in charge or an enhancement of helical structure, however, still needs to be established. Nevertheless, it is clear that the changes in efflux rate reflect the differences in the thermodynamics of binding and insertion of the free and amidated peptide groups. We have recently reported a detailed investigation (1) o
Population structure of the predatory mite Neoseiulus womersleyi in a tea field based on an analysis of microsatellite DNA markers
The predatory mite Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae) is an important natural enemy of the Kanzawa spider mite, Tetranychus kanzawaki Kishida (Acari: Tetranychidae), in tea fields. Attraction and preservation of natural enemies by habitat management to reduce the need for acaricide sprays is thought to enhance the activity of N. womersleyi. To better conserve N. womersleyi in the field, however, it is essential to elucidate the population genetic structure of this species. To this end, we developed ten microsatellite DNA markers for N. womersleyi. We then evaluated population structure of N. womersleyi collected from a tea field, where Mexican sunflower, Tithonia rotundifolia (Mill.), was planted to preserve N. womersleyi. Seventy-seven adult females were collected from four sites within 200 m. The fixation indexes FST among subpopulations were not significantly different. The kinship coefficients between individuals did not differ significantly within a site as a function of the sampling dates, but the coefficients gradually decreased with increasing distance. Bayesian clustering analysis revealed that the population consisted of three genetic clusters, and that subpopulations within 100 m, including those collected on T. rotundifolia, were genetically similar to each other. Given the previously observed population dynamics of N. womersleyi, it appears that the area inhabited by a given cluster of the mite did not exceed 100 m. The estimation of population structure using microsatellite markers will provide valuable information in conservation biological control
- …