268 research outputs found

    Impact of GnRH analogues on oocyte/embryo quality and embryo development in in vitro fertilization/intracytoplasmic sperm injection cycles: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the clinical outcomes of ovarian stimulation with either GnRH-agonist or GnRH-antagonist analogues for in vitro fertilization (IVF) being well analysed, the effect of analogues on oocyte/embryo quality and embryo development is still not known in detail. The aim of this case-control study was to compare the efficacy of a multiple-dose GnRH antagonist protocol with that of the GnRH agonist long protocol with a view to oocyte and embryo quality, embryo development and IVF treatment outcome.</p> <p>Methods</p> <p>Between October 2001 and December 2008, 100 patients were stimulated with human menopausal gonadotrophin (HMG) and GnRH antagonist in their first treatment cycle for IVF or intracytoplasmic sperm injection (ICSI). One hundred combined GnRH agonist + HMG (long protocol) cycles were matched to the GnRH antagonist + HMG cycles by age, BMI, baseline FSH levels and by cause of infertility. We determined the number and quality of retrieved oocytes, the rate of early-cleavage embryos, the morphology and development of embryos, as well as clinical pregnancy rates. Statistical analysis was performed using Wilcoxon's matched pairs rank sum test and McNemar's chi-square test. P < 0.05 was considered statistically significant.</p> <p>Results</p> <p>The rate of cytoplasmic abnormalities in retrieved oocytes was significantly higher with the use of GnRH antagonist than in GnRH agonist cycles (62.1% vs. 49.9%; P < 0.01). We observed lower rate of zygotes showing normal pronuclear morphology (49.3% vs. 58.0%; P < 0.01), and higher cell-number of preembryos on day 2 after fertilization (4.28 vs. 4.03; P < 0.01) with the use of GnRH antagonist analogues. The rate of mature oocytes, rate of presence of multinucleated blastomers, amount of fragmentation in embryos and rate of early-cleaved embryos was similar in the two groups. Clinical pregnancy rate per embryo transfer was lower in the antagonist group than in the agonist group (30.8% vs. 40.4%) although this difference did not reach statistical significance (P = 0.17).</p> <p>Conclusion</p> <p>Antagonist seemed to influence favourably some parameters of early embryo development dynamics, while other morphological parameters seemed not to be altered according to GnRH analogue used for ovarian stimulation in IVF cycles.</p

    Administration of single-dose GnRH agonist in the luteal phase in ICSI cycles: a meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effects of gonadotrophin-releasing hormone agonist (GnRH-a) administered in the luteal phase remains controversial. This meta-analysis aimed to evaluate the effect of the administration of a single-dose of GnRH-a in the luteal phase on ICSI clinical outcomes.</p> <p>Methods</p> <p>The research strategy included the online search of databases. Only randomized studies were included. The outcomes analyzed were implantation rate, clinical pregnancy rate (CPR) per transfer and ongoing pregnancy rate. The fixed effects model was used for odds ratio. In all trials, a single dose of GnRH-a was administered at day 5/6 after ICSI procedures.</p> <p>Results</p> <p>All cycles presented statistically significantly higher rates of implantation (P < 0.0001), CPR per transfer (P = 0.006) and ongoing pregnancy (P = 0.02) in the group that received luteal-phase GnRH-a administration than in the control group (without luteal-phase-GnRH-a administration). When meta-analysis was carried out only in trials that had used long GnRH-a ovarian stimulation protocol, CPR per transfer (P = 0.06) and ongoing pregnancy (P = 0.23) rates were not significantly different between the groups, but implantation rate was significant higher (P = 0.02) in the group that received luteal-phase-GnRH-a administration. On the other hand, the results from trials that had used GnRH antagonist multi-dose ovarian stimulation protocol showed statistically significantly higher implantation (P = 0.0002), CPR per transfer (P = 0.04) and ongoing pregnancy rate (P = 0.04) in the luteal-phase-GnRH-a administration group. The majority of the results presented heterogeneity.</p> <p>Conclusions</p> <p>These findings demonstrate that the luteal-phase single-dose GnRH-a administration can increase implantation rate in all cycles and CPR per transfer and ongoing pregnancy rate in cycles with GnRH antagonist ovarian stimulation protocol. Nevertheless, by considering the heterogeneity between the trials, it seems premature to recommend the use of GnRH-a in the luteal phase. Additional randomized controlled trials are necessary before evidence-based recommendations can be provided.</p

    Parthenogenic Blastocysts Derived from Cumulus-Free In Vitro Matured Human Oocytes

    Get PDF
    Approximately 20% of oocytes are classified as immature and discarded following intracytoplasmic sperm injection (ICSI) procedures. These oocytes are obtained from gonadotropin-stimulated patients, and are routinely removed from the cumulus cells which normally would mature the oocytes. Given the ready access to these human oocytes, they represent a potential resource for both clinical and basic science application. However culture conditions for the maturation of cumulus-free oocytes have not been optimized. We aimed to improve maturation conditions for cumulus-free oocytes via culture with ovarian paracrine/autocrine factors identified by single cell analysis..Human cumulus-free oocytes from hormone-stimulated cycles are capable of developing to blastocysts when cultured with ovarian factor supplementation. Our improved IVM culture conditions may be used for obtaining mature oocytes for clinical purposes and/or for derivation of embryonic stem cells following parthenogenesis or nuclear transfer

    Semen molecular and cellular features: these parameters can reliably predict subsequent ART outcome in a goat model

    Get PDF
    Currently, the assessment of sperm function in a raw or processed semen sample is not able to reliably predict sperm ability to withstand freezing and thawing procedures and in vivo fertility and/or assisted reproductive biotechnologies (ART) outcome. The aim of the present study was to investigate which parameters among a battery of analyses could predict subsequent spermatozoa in vitro fertilization ability and hence blastocyst output in a goat model. Ejaculates were obtained by artificial vagina from 3 adult goats (Capra hircus) aged 2 years (A, B and C). In order to assess the predictive value of viability, computer assisted sperm analyzer (CASA) motility parameters and ATP intracellular concentration before and after thawing and of DNA integrity after thawing on subsequent embryo output after an in vitro fertility test, a logistic regression analysis was used. Individual differences in semen parameters were evident for semen viability after thawing and DNA integrity. Results of IVF test showed that spermatozoa collected from A and B lead to higher cleavage rates (0 < 0.01) and blastocysts output (p < 0.05) compared with C. Logistic regression analysis model explained a deviance of 72% (p < 0.0001), directly related with the mean percentage of rapid spermatozoa in fresh semen (p < 0.01), semen viability after thawing (p < 0.01), and with two of the three comet parameters considered, i.e tail DNA percentage and comet length (p < 0.0001). DNA integrity alone had a high predictive value on IVF outcome with frozen/thawed semen (deviance explained: 57%). The model proposed here represents one of the many possible ways to explain differences found in embryo output following IVF with different semen donors and may represent a useful tool to select the most suitable donors for semen cryopreservation

    Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes

    Get PDF
    Maintaining the integrity of sperm DNA is vital to reproduction and male fertility. Sperm contain a number of molecules and pathways for the repair of base excision, base mismatches and DNA strand breaks. The presence of Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, and its homologues has recently been shown in male germ cells, specifically during stage VII of spermatogenesis. High PARP expression has been reported in mature spermatozoa and in proven fertile men. Whenever there are strand breaks in sperm DNA due to oxidative stress, chromatin remodeling or cell death, PARP is activated. However, the cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Therefore, cleaved PARP (cPARP) may be considered a marker of apoptosis. The presence of higher levels of cPARP in sperm of infertile men adds a new proof for the correlation between apoptosis and male infertility. This review describes the possible biological significance of PARP in mammalian cells with the focus on male reproduction. The review elaborates on the role played by PARP during spermatogenesis, sperm maturation in ejaculated spermatozoa and the potential role of PARP as new marker of sperm damage. PARP could provide new strategies to preserve fertility in cancer patients subjected to genotoxic stresses and may be a key to better male reproductive health

    Spermatozoal sensitive biomarkers to defective protaminosis and fragmented DNA

    Get PDF
    Human sperm DNA damage may have adverse effects on reproductive outcome. Infertile men possess substantially more spermatozoa with damaged DNA compared to fertile donors. Although the extent of this abnormality is closely related to sperm function, the underlying etiology of ensuing male infertility is still largely controversial. Both intra-testicular and post-testicular events have been postulated and different mechanisms have been proposed to explain the presence of damaged DNA in human spermatozoa. Three among them, i.e. abnormal chromatin packaging, oxidative stress and apoptosis, are the most studied and discussed in the present review. Furthermore, results from numerous investigations are presented, including our own findings on these pathological conditions, as well as the techniques applied for their evaluation. The crucial points of each methodology on the successful detection of DNA damage and their validity on the appraisal of infertile patients are also discussed. Along with the conventional parameters examined in the standard semen analysis, evaluation of damaged sperm DNA seems to complement the investigation of factors affecting male fertility and may prove an efficient diagnostic tool in the prediction of pregnancy outcome
    corecore