42 research outputs found

    Towards an Iterative Algorithm for the Optimal Boundary Coverage of a 3D Environment

    Get PDF
    This paper presents a new optimal algorithm for locating a set of sensors in 3D able to see the boundaries of a polyhedral environment. Our approach is iterative and is based on a lower bound on the sensors' number and on a restriction of the original problem requiring each face to be observed in its entirety by at least one sensor. The lower bound allows evaluating the quality of the solution obtained at each step, and halting the algorithm if the solution is satisfactory. The algorithm asymptotically converges to the optimal solution of the unrestricted problem if the faces are subdivided into smaller part

    Towards an enterprise architecture for public administration using a top-down approach

    Full text link

    Downloaded from

    No full text
    This paper presents a dynamic sensor-planning system that is capable of planning the locations and settings of vision sensors for use in an environment containing objects moving in known ways. The key component of this research is the computation of the camera position, orientation, and optical settings to be used over a time interval. A new algorithm is presented for viewpoint computation which ensures that the feature-detectability constraints of focus, resolution, field of view, and visibility are satisfied. A five-degree-of-freedom Cartesian robot carrying a CCD camera in a hand/eye configuration and surrounding the work cell of a Puma 560 robot was constructed for performing sensor-planning experiments. The results of these experiments, demonstrating the use of this system in a robot work cell, are presented. 1. Dynamic Sensor Plannin
    corecore