227 research outputs found

    Dephosphorylation of cAMP-dependent protein kinase regulatory subunit (type II) by calmodulin-dependent protein phosphatase. Determinants of substrate specificity.

    Get PDF
    Journal ArticleCalmodulin-dependent protein phosphatase purified from bovine cardiac muscle catalyzed the rapid dephosphorylation of Ser-95 of bovine cardiac cAMP-dependent protein kinase regulatory subunit (RII). The kinetic constants determined for the reaction (Km = 20 microM; Vmax = 2 mumol min-1 mg-1) are comparable to those determined for other good substrates of this phosphatase. Because little is known about the determinants of substrate specificity for the calmodulin-dependent phosphatase, various phosphopeptides were used to investigate the structural features important for substrate recognition. Limited proteolysis of phospho-RII with trypsin and chymotrypsin yielded fragments (residues 93-400 and 91-400, respectively) that were poor substrates, whereas digestion with Staphylococcal aureus V8 protease produced three phosphopeptides that were all dephosphorylated as rapidly as intact RII. The sequence of the shortest phosphopeptide produced by S. aureus V8 protease was determined by sequence analysis to be Asp-Leu-Asp-Val-Pro-Ile-Pro-Gly-Arg-Phe-Asp-Arg-Arg-Val-Ser-Val-Cys-Ala-Glu, corresponding to residues 81-99 of RII. Synthetic phosphopeptides corresponding to residues 81-99, 85-99, 90-99, and 91-99 were prepared to determine the minimum sequence necessary for substrate recognition. Only the 19-residue peptide (81-99) was dephosphorylated with kinetics comparable to RII (Km = 26 microM, Vmax = 1.7 mumol min-1 mg-1). Structural analysis of this peptide indicates that an amphipathic beta-sheet structure may be an important structural determinant for some substrates of the calmodulin-dependent phosphatase

    Identification of the calmodulin-binding domain of skeletal muscle myosin light

    Get PDF
    Journal ArticleIn the course of determining the primary structure of rabbit skeletal muscle myosin light chain kinase (MLCK; ATP:protein phosphotransferase, EC 2.7.1.37) a peptide fragment was obtained that appears to represent the calmodulin-binding domain of this enzyme. Low concentrations of the peptide inhibited calmodulin activation of MLCK (Ki congruent to 1 nM). The peptide was not associated with a catalytically active, calmodulin-independent form of MLCK that was obtained by limited proteolysis. The peptide is 27 residues in length and represents the carboxyl terminus of MLCK. The sequence of the peptide shows no significant homology with any known protein sequence. The peptide contains one tryptophanyl residue and a high percentage of basic and hydrophobic residues, but no acidic or prolyl residues. Much of the sequence has a high probability of forming alpha helix. A chemically synthesized peptide has been prepared to study the interactions of the peptide and calmodulin in more detail. The intrinsic tryptophan fluorescence of the synthetic peptide shows a significant enhancement (approximately equal to 45%) in the presence of Ca2+ and calmodulin; fluorescence enhancement is maximal at a peptide:calmodulin stoichiometry of 1:1. Calmodulin-Sepharose affinity chromatography in the presence of 2 M urea indicates that the interaction of peptide and calmodulin is Ca2+-dependent. The results of these studies indicate that the catalytic and calmodulin-binding domains of MLCK represent distinct and separable regions of the protein. In addition, the results provide a basis for future studies of the molecular and evolutionary details of calmodulin-dependent enzyme regulation

    Automatic Analysis of Composite Physical Signals Using Non-Negative Factorization and Information Criterion

    Get PDF
    In time-resolved spectroscopy, composite signal sequences representing energy transfer in fluorescence materials are measured, and the physical characteristics of the materials are analyzed. Each signal sequence is represented by a sum of non-negative signal components, which are expressed by model functions. For analyzing the physical characteristics of a measured signal sequence, the parameters of the model functions are estimated. Furthermore, in order to quantitatively analyze real measurement data and to reduce the risk of improper decisions, it is necessary to obtain the statistical characteristics from several sequences rather than just a single sequence. In the present paper, we propose an automatic method by which to analyze composite signals using non-negative factorization and an information criterion. The proposed method decomposes the composite signal sequences using non-negative factorization subjected to parametric base functions. The number of components (i.e., rank) is also estimated using Akaike's information criterion. Experiments using simulated and real data reveal that the proposed method automatically estimates the acceptable ranks and parameters

    Diagnosis of osteoporosis from dental panoramic radiographs using the support vector machine method in a computer-aided system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early diagnosis of osteoporosis can potentially decrease the risk of fractures and improve the quality of life. Detection of thin inferior cortices of the mandible on dental panoramic radiographs could be useful for identifying postmenopausal women with low bone mineral density (BMD) or osteoporosis. The aim of our study was to assess the diagnostic efficacy of using kernel-based support vector machine (SVM) learning regarding the cortical width of the mandible on dental panoramic radiographs to identify postmenopausal women with low BMD.</p> <p>Methods</p> <p>We employed our newly adopted SVM method for continuous measurement of the cortical width of the mandible on dental panoramic radiographs to identify women with low BMD or osteoporosis. The original X-ray image was enhanced, cortical boundaries were determined, distances among the upper and lower boundaries were evaluated and discrimination was performed by a radial basis function. We evaluated the diagnostic efficacy of this newly developed method for identifying women with low BMD (BMD T-score of -1.0 or less) at the lumbar spine and femoral neck in 100 postmenopausal women (≥50 years old) with no previous diagnosis of osteoporosis. Sixty women were used for system training, and 40 were used in testing.</p> <p>Results</p> <p>The sensitivity and specificity using RBF kernel-SVM method for identifying women with low BMD were 90.9% [95% confidence interval (CI), 85.3-96.5] and 83.8% (95% CI, 76.6-91.0), respectively at the lumbar spine and 90.0% (95% CI, 84.1-95.9) and 69.1% (95% CI, 60.1-78.6), respectively at the femoral neck. The sensitivity and specificity for identifying women with low BMD at either the lumbar spine or femoral neck were 90.6% (95% CI, 92.0-100) and 80.9% (95% CI, 71.0-86.9), respectively.</p> <p>Conclusion</p> <p>Our results suggest that the newly developed system with the SVM method would be useful for identifying postmenopausal women with low skeletal BMD.</p

    A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All previously reported eukaryotic nuclear genome sequences have been incomplete, especially in highly repeated units and chromosomal ends. Because repetitive DNA is important for many aspects of biology, complete chromosomal structures are fundamental for understanding eukaryotic cells. Our earlier, nearly complete genome sequence of the hot-spring red alga <it>Cyanidioschyzon merolae </it>revealed several unique features, including just three ribosomal DNA copies, very few introns, and a small total number of genes. However, because the exact structures of certain functionally important repeated elements remained ambiguous, that sequence was not complete. Obviously, those ambiguities needed to be resolved before the unique features of the <it>C. merolae </it>genome could be summarized, and the ambiguities could only be resolved by completing the sequence. Therefore, we aimed to complete all previous gaps and sequence all remaining chromosomal ends, and now report the first nuclear-genome sequence for any eukaryote that is 100% complete.</p> <p>Results</p> <p>Our present complete sequence consists of 16546747 nucleotides covering 100% of the 20 linear chromosomes from telomere to telomere, representing the simple and unique chromosomal structures of the eukaryotic cell. We have unambiguously established that the <it>C. merolae </it>genome contains the smallest known histone-gene cluster, a unique telomeric repeat for all chromosomal ends, and an extremely low number of transposons.</p> <p>Conclusion</p> <p>By virtue of these attributes and others that we had discovered previously, <it>C. merolae </it>appears to have the simplest nuclear genome of the non-symbiotic eukaryotes. These unusually simple genomic features in the 100% complete genome sequence of <it>C. merolae </it>are extremely useful for further studies of eukaryotic cells.</p

    Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates

    Get PDF
    Hox genes exert fundamental roles for proper regional specification along the main rostro-caudal axis of animal embryos. They are generally expressed in restricted spatial domains according to their position in the cluster (spatial colinearity)—a feature that is conserved across bilaterians. In jawed vertebrates (gnathostomes), the position in the cluster also determines the onset of expression of Hox genes (a feature known as whole-cluster temporal colinearity (WTC)), while in invertebrates this phenomenon is displayed as a subcluster-level temporal colinearity. However, little is known about the expression profile of Hox genes in jawless vertebrates (cyclostomes); therefore, the evolutionary origin of WTC, as seen in gnathostomes, remains a mystery. Here, we show that Hox genes in cyclostomes are expressed according to WTC during development. We investigated the Hox repertoire and Hox gene expression profiles in three different species—a hagfish, a lamprey and a shark—encompassing the two major groups of vertebrates, and found that these are expressed following a whole-cluster, temporally staggered pattern, indicating that WTC has been conserved during the past 500 million years despite drastically different genome evolution and morphological outputs between jawless and jawed vertebrates

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link
    • …
    corecore