191 research outputs found

    Far-Infrared Spectroscopy in Spin-Peierls Compound CuGeO_3 under High Magnetic Fields

    Full text link
    Polarized far-infrared (FIR) spectroscopic measurements and FIR magneto-optical studies were performed on the inorganic spin-Peierls compound CuGeO_3. An absorption line, which was found at 98 cm1^{-1} in the dimerized phase (D phase), was assigned to a folded phonon mode of B3u_{3u} symmetry. The splitting of the folded mode into two components in the incommensurate phase (IC phase) has been observed for the first time. A new broad absorption centered at 63 cm1^{-1} was observed only in the Eb{\bf E}\parallel b axis polarization, which was assigned to a magnetic excitation from singlet ground state to a continuum state.Comment: 9 pages multicolREVTeX, 10 figure

    Spin-phonon coupled modes in the incommensurate phases of doped CuGeO3_{3}

    Full text link
    The doping effect of the folded phonon mode at 98 cm1^{-1} was investigated on the Si-doped CuGeO3_3 by magneto-optical measurements in far-infrared (FIR) region under high magnetic field. The folded phonon mode at 98 cm1^{-1} appears not only in the dimerized (D) phase but also in the dimerized-anitiferromagnetic (DAF) phase on the doped CuGeO3_3. The splitting was observed in the incommensurate (IC) phase and the antiferromagnetically ordered incommensurate (IAF) phase above HCH_C. The split-off branches exhibit different field dependence from that of the pure CuGeO3_3 in the vicinity of HCH_C, and the discrepancy in the IAF phase is larger than that in the IC phase. It is caused by the interaction between the solitons and the impurities.Comment: 7 pages, 4 figures, resubmitted to Phys. Rev.

    Theory of phonon-assisted "forbidden" optical transitions in spin-gapped systems

    Full text link
    We consider the absorption of light with emission of one S(tot)=1 magnetic excitation in systems with a spin gap induced by quantum fluctuations. We argue that an electric dipole transition is allowed on the condition that a virtual phonon instantaneously breaks the inversion symmetry. We derive an effective operator for the transition and argue that the proposed theory explains the polarized experiments in CuGeO(3) and SrCu(2)[BO(3)](2).Comment: 9 pages, 4 figure

    Energy Dissipation Burst on the Traffic Congestion

    Get PDF
    We introduce an energy dissipation model for traffic flow based on the optimal velocity model (OV model). In this model, vehicles are defined as moving under the rule of the OV model, and energy dissipation rate is defined as the product of the velocity of a vehicle and resistant force which works to it.Comment: 15 pages, 19 Postscript figures. Reason for replacing: This is the submitted for

    Magnetic and Dielectric Properties in Multiferroic Cu3Mo2O9 under High Magnetic Fields

    Full text link
    The magnetic and dielectric properties under high magnetic fields are studied in the single crystal of Cu3Mo2O9. This multiferroic compound has distorted tetrahedral spin chains. The effects of the quasi-one dimensionality and the geometrical spin frustration are expected to appear simultaneously. We measure the magnetoelectric current and the differential magnetization under the pulsed magnetic field up to 74 T. We also measure the electric polarization versus the electric field curve/loop under the static field up to 23 T. Dielectric properties change at the magnetic fields where the magnetization jumps are observed in the magnetization curve. Moreover, the magnetization plateaus are found at high magnetic fields.Comment: 6 pages, 3 figures, in press in JPS Conf. Proc. as a part of SCES2013 Proceeding

    Extracellular vesicles synchronize cellular phenotypes of differentiating cells

    Get PDF
    細胞外小胞が細胞の分化を同調させる現象の発見. 京都大学プレスリリース. 2021-10-01.Cells act in unison when next to each other. 京都大学プレスリリース. 2021-10-01.During embryonic development, cells differentiate in a coordinated manner, aligning their fate decisions and differentiation stages with those of surrounding cells. However, little is known about the mechanisms that regulate this synchrony. Here we show that cells in close proximity synchronize their differentiation stages and cellular phenotypes with each other via extracellular vesicle (EV)-mediated cellular communication. We previously established a mouse embryonic stem cell (ESC) line harbouring an inducible constitutively active protein kinase A (CA-PKA) gene and found that the ESCs rapidly differentiated into mesoderm after PKA activation. In the present study, we performed a co-culture of Control-ESCs and PKA-ESCs, finding that both ESC types rapidly differentiated in synchrony even when PKA was activated only in PKA-ESCs, a phenomenon we named ‘Phenotypic Synchrony of Cells (PSyC)’. We further demonstrated PSyC was mediated by EVs containing miR-132. PKA-ESC-derived EVs and miR-132-containing artificial nano-vesicles similarly enhanced mesoderm and cardiomyocyte differentiation in ESCs and ex vivo embryos, respectively. PSyC is a new form of cell-cell communication mediated by the EV regulation of neighbouring cells and could be broadly involved in tissue development and homeostasis

    Possible Phase Transition Deep Inside the Hidden Order Phase of Ultraclean URu2Si2

    Full text link
    To elucidate the underlying nature of the hidden order (HO) state in heavy-fermion compound URu2Si2, we measure electrical transport properties of ultraclean crystals in a high field/low temperature regime. Unlike previous studies, the present system with much less impurity scattering resolves a distinct anomaly of the Hall resistivity at H*=22.5 T well below the destruction field of the HO phase ~36 T. In addition, a novel quantum oscillation appears above a magnetic field slightly below H*. These results indicate an abrupt reconstruction of the Fermi surface, which implies a possible phase transition well within the HO phase caused by a band-dependent destruction of the HO parameter. The present results definitely indicate that the HO transition should be described by an itinerant electron picture.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Low energy excitations and dynamic Dzyaloshinskii-Moriya interaction in α\alpha'-NaV2_2O5_5 studied by far infrared spectroscopy

    Full text link
    We have studied far infrared transmission spectra of alpha'-NaV2O5 between 3 and 200cm-1 in polarizations of incident light parallel to a, b, and c crystallographic axes in magnetic fields up to 33T. The triplet origin of an excitation at 65.4cm-1 is revealed by splitting in the magnetic field. The magnitude of the spin gap at low temperatures is found to be magnetic field independent at least up to 33T. All other infrared-active transitions appearing below Tc are ascribed to zone-folded phonons. Two different dynamic Dzyaloshinskii-Moriya (DM) mechanisms have been discovered that contribute to the oscillator strength of the otherwise forbidden singlet to triplet transition. 1. The strongest singlet to triplet transition is an electric dipole transition where the polarization of the incident light's electric field is parallel to the ladder rungs, and is allowed by the dynamic DM interaction created by a high frequency optical a-axis phonon. 2. In the incident light polarization perpendicular to the ladder planes an enhancement of the singlet to triplet transition is observed when the applied magnetic field shifts the singlet to triplet resonance frequency to match the 68cm-1 c-axis phonon energy. The origin of this mechanism is the dynamic DM interaction created by the 68cm-1 c-axis optical phonon. The strength of the dynamic DM is calculated for both mechanisms using the presented theory.Comment: 21 pages, 22 figures. Version 2 with replaced fig. 18 were labels had been los

    Epidermal growth factor receptor structural alterations in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>EGFR overexpression has been described in many human tumours including gastric cancer. In NSCLC patients somatic EGFR mutations, within the kinase domain of the protein, as well as gene amplification were associated with a good clinical response to EGFR inhibitors. In gastric tumours data concerning structural alterations of EGFR remains controversial. Given its possible therapeutic relevance, we aimed to determine the frequency and type of structural alterations of the <it>EGFR </it>gene in a series of primary gastric carcinomas.</p> <p>Methods</p> <p>Direct sequencing of the kinase domain of the <it>EGFR </it>gene was performed in a series of 77 primary gastric carcinomas. FISH analysis was performed in 30 cases. Association studies between <it>EGFR </it>alterations and the clinical pathological features of the tumours were performed.</p> <p>Results</p> <p>Within the 77 primary gastric carcinomas we found two <it>EGFR </it>somatic mutations and several <it>EGFR </it>polymorphisms in exon 20. Six different intronic sequence variants of <it>EGFR </it>were also found. Four gastric carcinomas showed balanced polysomy or <it>EGFR </it>gene amplification. We verified that gastric carcinoma with alterations of <it>EGFR </it>(somatic mutations or copy number variation) showed a significant increase of tumour size (<it>p </it>= 0.0094) in comparison to wild-type <it>EGFR </it>carcinomas.</p> <p>Conclusion</p> <p>We demonstrate that <it>EGFR </it>structural alterations are rare in gastric carcinoma, but whenever present, it leads to tumour growth. We considered that searching for <it>EGFR </it>alterations in gastric cancer is likely to be clinically important in order to identify patients susceptible to respond to tyrosine kinase inhibitors.</p
    corecore