51 research outputs found

    Heterogeneous Nuclear Ribonucleoprotein K Interacts with Abi-1 at Postsynaptic Sites and Modulates Dendritic Spine Morphology

    Get PDF
    BACKGROUND: Abelson-interacting protein 1 (Abi-1) plays an important role for dendritic branching and synapse formation in the central nervous system. It is localized at the postsynaptic density (PSD) and rapidly translocates to the nucleus upon synaptic stimulation. At PSDs Abi-1 is in a complex with several other proteins including WASP/WAVE or cortactin thereby regulating the actin cytoskeleton via the Arp 2/3 complex. PRINCIPAL FINDINGS: We identified heterogeneous nuclear ribonucleoprotein K (hnRNPK), a 65 kDa ssDNA/RNA-binding-protein that is involved in multiple intracellular signaling cascades, as a binding partner of Abi-1 at postsynaptic sites. The interaction with the Abi-1 SH3 domain is mediated by the hnRNPK-interaction (KI) domain. We further show that during brain development, hnRNPK expression becomes more and more restricted to granule cells of the cerebellum and hippocampal neurons where it localizes in the cell nucleus as well as in the spine/dendritic compartment. The downregulation of hnRNPK in cultured hippocampal neurons by RNAi results in an enlarged dendritic tree and a significant increase in filopodia formation. This is accompanied by a decrease in the number of mature synapses. Both effects therefore mimic the neuronal morphology after downregulation of Abi-1 mRNA in neurons. CONCLUSIONS: Our findings demonstrate a novel interplay between hnRNPK and Abi-1 in the nucleus and at synaptic sites and show obvious similarities regarding both protein knockdown phenotypes. This indicates that hnRNPK and Abi-1 act synergistic in a multiprotein complex that regulates the crucial balance between filopodia formation and synaptic maturation in neurons

    An SK3 Channel/nWASP/Abi-1 Complex Is Involved in Early Neurogenesis

    Get PDF
    BACKGROUND: The stabilization or regulated reorganization of the actin cytoskeleton is essential for cellular structure and function. Recently, we could show that the activation of the SK3-channel that represents the predominant SK-channel in neural stem cells, leads to a rapid local outgrowth of long filopodial processes. This observation indicates that the rearrangement of the actin based cytoskeleton via membrane bound SK3-channels might selectively be controlled in defined micro compartments of the cell. PRINCIPAL FINDINGS: We found two important proteins for cytoskeletal rearrangement, the Abelson interacting protein 1, Abi-1 and the neural Wiskott Aldrich Syndrome Protein, nWASP, to be in complex with SK3- channels in neural stem cells (NSCs). Moreover, this interaction is also found in spines and postsynaptic compartments of developing primary hippocampal neurons and regulates neurite outgrowth during early phases of differentiation. Overexpression of the proteins or pharmacological activation of SK3 channels induces obvious structural changes in NSCs and hippocampal neurons. In both neuronal cell systems SK3 channels and nWASP act synergistic by strongly inducing filopodial outgrowth while Abi-1 behaves antagonistic to its interaction partners. CONCLUSIONS: Our results give good evidence for a functional interplay of a trimeric complex that transforms incoming signals via SK3-channel activation into the local rearrangement of the cytoskeleton in early steps of neuronal differentiation involving nWASP and Abi-1 actin binding proteins

    HPV-Infektion als prognosebestimmender Faktor bei Kopf-Halskarzinomen? Ergebnisse am Bundeswehrkrankenhaus Ulm

    No full text

    Smoking Impairs Hematoma Formation and Dysregulates Angiogenesis as the First Steps of Fracture Healing

    No full text
    Bone fracture healing is an overly complex process in which inflammation, osteogenesis, and angiogenesis are tightly coupled, and delayed fracture repair is a very common health risk. One of the major causes of delayed healing is the formation of insufficient vasculature. Precise regulation of blood vessels in bone and their interplay with especially osteogenic processes has become an emerging topic within the last years; nevertheless, regulation of angiogenesis in (early) diseased fracture repair is still widely unknown. Here, we aim to develop an in vitro model for the analysis of early fracture healing which also enables the analysis of angiogenesis as a main influencing factor. As smoking is one of the main risk factors for bone fractures and developing a delay in healing, we model smoking and non-smoking conditions in vitro to analyze diverging reactions. Human in vitro fracture hematomas mimicking smokers’ and non-smokers’ hematomas were produced and analyzed regarding cell viability, inflammation, osteogenic and chondrogenic differentiation, and angiogenic potential. We could show that smokers’ blood hematomas were viable and comparable to non-smokers. Smokers’ hematomas showed an increase in inflammation and a decrease in osteogenic and chondrogenic differentiation potential. When analyzing angiogenesis, we could show that the smokers’ hematomas secrete factors that drastically reduced HUVEC proliferation and tube formation. With an angiogenesis array and gene expression analysis, we could identify the main influencing factors: Anpgt1/2, Tie2, and VEGFR2/3. In conclusion, our model is suitable to mimic smoking conditions in vitro showing that smoking negatively impacts early vascularization of newly formed tissue
    • …
    corecore