823 research outputs found

    Three-level mixing model for nuclear chiral rotation: Role of planar component

    Full text link
    Three- and two-level mixing models are proposed to understand the doubling of states at the same spin and parity in triaxially-deformed atomic nuclei with odd numbers of protons and neutrons. The Particle-Rotor Model for such nuclei is solved using the newly proposed basis which couples angular momenta of two valence nucleons and the rotating triaxial mean-field into left-handed L|\mathcal{L}\rangle, right-handed R|\mathcal{R}\rangle, and planar P|\mathcal{P}\rangle configurations. The presence and the impact of the planar component is investigated as a function of the total spin for mass A\approx130 nuclei with the valence h11/2_{11/2} proton particle, valence h11/2_{11/2} neutron hole and the maximum difference between principle axes allowed by the quadrupole deformation of the mean field. It is concluded that at each spin value the higher-energy member of a doublet of states is built on the anti-symmetric combination of L|\mathcal{L}\rangle and R|\mathcal{R}\rangle and is free of the P|\mathcal{P}\rangle component, indicating that it is of pure chiral geometry. For the lower-energy member of the doublet, the contribution of the P|\mathcal{P}\rangle component to the eigenfunction first decreases and then increases as a function of the total spin. This trend as well as the energy splitting between the doublet states are both determined by the Hamiltonian matrix elements between the planar (P|\mathcal{P}\rangle) and non-planar (L|\mathcal{L}\rangle and R|\mathcal{R}\rangle) subspaces of the full Hilbert space.Comment: 12 pages, 5 figures, accepted as a Rapid Communication in Physical Review

    Triaxiality, chirality and gamma-softness

    Full text link
    Current work explores the impact of gamma-softness on partner bands built on the h11/2h11/2 proton-particle-neutron-hole configurations in triaxial odd-odd nuclei. The results of calculations conducted using a core-particle-hole coupling are presented. The model Hamiltonian includes the collective core, the single-particle valence nucleons, and separable quadrupole-quadrupole interactions. The Kerman-Klein method was applied to find eigenstates, which provided a convenient way for exploring core effects. Calculations were made for triaxial cores with various gamma-softness using the General Collective Model keeping the expectation value for the triaxiality parameter fixed at =30 deg. The degeneracy in the proton-neutron h11/2h11/2 bands results from the calculations for the gamma-rigid core but is lifted for the gamma-unstable core.Comment: 6 pages, 5 figures, Proceedings of the 21st Winter Workshop on Nuclear Dynamics, Breckenridge, Colorado, February 5-12, 200

    Kerman-Klein-Donau-Frauendorf model for odd-odd nuclei: formal theory

    Get PDF
    The Kerman-Klein-Donau-Frauendorf (KKDF) model is a linearized version of the Kerman-Klein (equations of motion) formulation of the nuclear many-body problem. In practice, it is a generalization of the standard core-particle coupling model that, like the latter, provides a description of the spectroscopy of odd nuclei in terms of the properties of neighboring even nuclei and of single-particle properties, that are the input parameters of the model. A divers sample of recent applications attest to the usefulness of the model. In this paper, we first present a concise general review of the fundamental equations and properties of the KKDF model. We then derive a corresponding formalism for odd-odd nuclei that relates their properties to those of four neighboring even nuclei, all of which enter if one is to include both multipole and pairing forces. We treat these equations in two ways. In the first we make essential use of the solutions of the neighboring odd nucleus problem, as obtained by the KKDF method. In the second, we relate the properties of the odd-odd nuclei directly to those of the even nuclei. For both choices, we derive equations of motion, normalization conditions, and an expression for transition amplitudes. We also solve the problem of choosing the subspace of physical solutions that arises in an equations of motion approach that includes pairing interactions.Comment: 27 pages, Late

    Linear polarization sensitivity of SeGA detectors

    Get PDF
    Parity is a key observable in nuclear spectroscopy. Linear polarization measurements of γ\gamma-rays are a probe to access the parities of energy levels. Utilizing the segmentation of detectors in the Segmented Germanium Array (SeGA) at the NSCL and analyzing the positions of interaction therein allows the detectors to be used as Compton polarimeters. Unlike other segmented detectors, SeGA detectors are irradiated from the side to utilize the transversal segmentation for better Doppler corrections. Sensitivity in such an orientation has previously been untested. A linear polarization sensitivity Q0.14Q \approx 0.14 has been measured in the 350-keV energy range for SeGA detectors using α\alpha-γ\gamma correlations from a \nuc{249}{Cf} source.Comment: 7 pages, 9 figure

    Lifetimes of doubly K -shell ionized states

    Get PDF
    The present work provides a reliable interpretation of the Khα₁/Khα₂ intensity ratios and an explanation of the lifetime values for K-shell hollow atoms based on an advanced theoretical analysis (using extensive multiconfiguration Dirac–Fock calculations with the inclusion of the transverse Breit interaction and quantum electrodynamics corrections). It was found that, as a result of closing the Khα₁ de-excitation channel in the pure LS coupling scheme, the Khα₁/Khα₂ intensity ratio changes with the atomic number from small values (for the LS coupling limit at low Z) to about 1.5– 1.6 (for the j–j coupling limit at high Z). However, closing the Khα₁ de-excitation channel (due to the domination of the pure LS coupling for the low-Z atoms) does not enlarge the lifetimes of hollow atoms

    Clock and Trigger Synchronization between Several Chassis of Digital Data Acquisition Modules

    Full text link
    In applications with segmented high purity Ge detectors or other detector arrays with tens or hundreds of channels, where the high development cost and limited flexibility of application specific integrated circuits outweigh their benefits of low power and small size, the readout electronics typically consist of multi-channel data acquisition modules in a common chassis for power, clock and trigger distribution, and data readout. As arrays become larger and reach several hundred channels, the readout electronics have to be divided over several chassis, but still must maintain precise synchronization of clocks and trigger signals across all channels. This division becomes necessary not only because of limits given by the instrumentation standards on module size and chassis slot numbers, but also because data readout times increase when more modules share the same data bus and because power requirements approach the limits of readily available power supplies. In this paper, we present a method for distributing clocks and triggers between 4 PXI chassis containing DGF Pixie-16 modules with up to 226 acquisition channels per chassis in a data acquisition system intended to instrument the over 600 channels of the SeGA detector array at the National Superconducting Cyclotron Laboratory. Our solution is designed to achieve synchronous acquisition of detector waveforms from all channels with a jitter of less then 1 ns, and can be extended to a larger number of chassis if desired.Comment: CAARI 200

    A Composite Chiral Pair of Rotational Bands in the odd-A Nucleus 135Nd

    Get PDF
    High-spin states in 135Nd were populated with the 110Pd(30Si,5n)135Nd reaction at a 30Si bombarding energy of 133 MeV. Two Delta(I)=1 bands with close excitation energies and the same parity were observed. These bands are directly linked by Delta(I)=1 and Delta(I)=2 transitions. The chiral nature of these two bands is confirmed by comparison with three-dimensional tilted axis cranking calculations. This is the first observation of a three-quasiparticle chiral structure and established the primarily geometric nature of this phenomenon.Comment: 10 pages, 5 figures (1 in color), 1 table, submitted to Physics Review Letters, written in REVTEX4 forma

    Measurement of excited states in 40Si and evidence for weakening of the N=28 shell gap

    Get PDF
    Excited states in 40Si have been established by detecting gamma-rays coincident with inelastic scattering and nucleon removal reactions on a liquid hydrogen target. The low excitation energy, 986(5) keV, of the 2+[1] state provides evidence of a weakening in the N=28 shell closure in a neutron-rich nucleus devoid of deformation-driving proton collectivity.Comment: accepted for publication in PR

    A high efficiency, low background detector for measuring pair-decay branches in nuclear decay

    Get PDF
    We describe a high efficiency detector for measuring electron-positron pair transitions in nuclei. The device was built to be insensitive to gamma rays and to accommodate high overall event rates. The design was optimized for total pair kinetic energies up to about 7 MeV.Comment: Accepted for publication by Nucl. Inst. & Meth. in Phys. Res. A (NIM A
    corecore