586 research outputs found

    Interdependence of magnetism and superconductivity in the borocarbide TmNi2B2C

    Get PDF
    We have discovered a new antiferromagnetic phase in TmNi2B2C by neutron diffraction. The ordering vector is Q_A = (0.48,0,0) and the phase appears above a critical in-plane magnetic field of 0.9 T. The field was applied in order to test the assumption that the zero-field magnetic structure at Q_F = (0.094,0.094,0) would change into a c-axis ferromagnet if superconductivity were destroyed. We present theoretical calculations which show that two effects are important: A suppression of the ferromagnetic component of the RKKY exchange interaction in the superconducting phase, and a reduction of the superconducting condensation energy due to the periodic modulation of the moments at the wave vector Q_A

    JUMPING STRATEGIES IN A VOLLEYBALL AND A BALLET SPECIFIC JUMP

    Get PDF
    INTRODUCTION The performance of a maximal vertical jump fram a static preparatory position (SQJ) or starting with a counter movement (CMJ) implies transformation of rotation about the hip, knee and ankle joints to a maximal translatory movement. Different strategies have been proposed for this transformation. Previously both sequential and simullaneous strategies have been proposed as optimal for maximal vertical jumping (1 & 2). The purpose of this study was to analyze ]umping strategies in a sport and dance specific maximal vertical jump. The hypothesis was that the technical demands of the Jumps would preset the strategy. Six male subjects participated in the study three professional ballet dancers and three elite volleyball players. In the ballet specific jump (BSJ) the legs were outward rotated, one foot was placed in front of and close to the other foot and the upper body kept upright. Three elite volleyball players performed the jump used for the smash (VSJ) including a three step preliminary run up and a farcefull arm swing. Afterwards all six subjects performed SQJ and CMJ. The ]umps were recorded on high speed film (500Hz) combined with registrations trom an AMTI force platform and EMG recordings from the major lower extremity muscles Net joint moments and joint work ware calculated by inverse dynamics. The strategy of the jumps was determined on the basis of angular kinematics and the pattern of nel joint moments of the two dominant joints RESULTS For BSJ the jumping height (h) was 0.22O.28m.The war!< contribution from the knee and ankle joint were 50-70% and 47-63% of the total work respectively while the work at the hip joint showed a negative contribution of 13-17% caused by a net hip flexor moment. Because of the specific ballet position the hip extension took place in the frontal plane and mgluteus maximus could not contribute to the extension. The concentric activity in mrectus femoris could partly explain the hip flexor moment. The knee and ankle joint initiated the extension phase simultaneously and the net joint moments peaked also simultaneously Therefore, the strategy could be defined as simultaneous. For VSJ h was 0.310.45m. The work contribution fram the knee and hip joints were 22-60% and 35-62% of the total work respectively. The hip joint began the extension phase before the body center of mass had reached its lowest position (sn The knee extension began 40-100ms after s.j. The peaks of the net joint moments of the hip and knee showed a similar pattern. Accordingly, the strategy could be defined as sequentiaL The sequential joint extension could partly be explained by the forcefull armswing pressing down and giving negative momentum in the downward phase and by this delaying the knee extension. In SQJ and CMJ h was 0.22-0.36m and 0.33-0AOm. The work contribution from the knee was 64.5%(SE 5.9) and 76.0% (SE 9.2) and from the hip 18.8% (SE 5.8) and 133% (SE 8.7). One ballet dancer and one volleyball player performed SQJ and CMJ with a simultaneous strategy while the otller four subjects used a sequential strategy. CONCLUSION In a maximal vertical jump fram ballet and from volleyball the technical demands preset the jumping strategy. When the subjects were asked to perform SQJ and CMJ the choice of strategy seemed individual and not connected to the training background. REFERENCES (1) Hudson, J.L. (1986). Med Sci. Sports Exerc, 18,242-251 (2) Babbert, M.F. & van lngen Schenau, G.J. (1986). J Biomechanics, 21, 249•26

    Dyke swarms and associated lava formations in the northern Lebombo monocline, Karoo Large Igneous Province, South Africa

    Get PDF
    As one of the early classical examples of plume-generated Large Igneous Provinces (LIPs), the Karoo is characterized by a bulls-eye distribution of High-Ti basalts, picrites, and earliest nephelinites onto a conspicuous triple rift junction (i.e., Okavango dyke swarm and the two Mwenezi and Lebombo monoclines), surrounded by Low-Ti basalts. It is noted that this regional distribution between high-and low-Ti basalts within the Jurassic Karoo LIP differs from that of the Permian Emeishan LIP; thereby undermining the use of this particular feature as evidence for mantle plume involvement

    Dyke swarms and associated lava formations in the northern Lebombo monocline, Karoo Large Igneous Province, South Africa

    Get PDF
    As one of the early classical examples of plume-generated Large Igneous Provinces (LIPs), the Karoo is characterized by a bulls-eye distribution of High-Ti basalts, picrites, and earliest nephelinites onto a conspicuous triple rift junction (i.e., Okavango dyke swarm and the two Mwenezi and Lebombo monoclines), surrounded by Low-Ti basalts. It is noted that this regional distribution between high-and low-Ti basalts within the Jurassic Karoo LIP differs from that of the Permian Emeishan LIP; thereby undermining the use of this particular feature as evidence for mantle plume involvement

    Mermin-Ho vortex in ferromagnetic spinor Bose-Einstein condensates

    Full text link
    The Mermin-Ho and Anderson-Toulouse coreless non-singular vortices are demonstrated to be thermodynamically stable in ferromagnetic spinor Bose-Einstein condensates with the hyperfine state F=1. The phase diagram is established in a plane of the rotation drive vs the total magnetization by comparing the energies for other competing non-axis-symmetric or singular vortices. Their stability is also checked by evaluating collective modes.Comment: 4 pages, 4 figure

    Major Cardiac Events in Patients and Relatives With Hereditary Hypertrophic Cardiomyopathy

    Get PDF
    BackgroundLittle evidence is available on the disease expression in relatives of index patients with hypertrophic cardiomyopathy (HCM). This information has important implications for family screening programs, genetic counseling, and management of affected families.ObjectivesThe purpose of this study was to investigate the disease expression and penetrance in relatives of index patients carrying pathogenic/likely pathogenic (P/LP) variants in recognized HCM genes.MethodsA total of 453 consecutive and unrelated HCM index patients underwent clinical and genetic investigations. A total of 903 relatives of genotype-positive index patients were invited for clinical investigations and genetic testing. Penetrance, disease expression, and incidence rates of major adverse cardiac events (MACEs) were investigated in individuals carrying P/LP variants.ResultsForty percent (183/453) of index patients carried a P/LP variant. Eighty-four percent (757/903) of all relatives of index patients with P/LP variants were available for the investigation, of whom 54% (407/757) carried a P/LP variant. The penetrance of HCM among relatives was 39% (160/407). Relatives with HCM and index patients were diagnosed at a similar age (43 ± 18 years vs 46 ± 15 years; P = 0.11). There were no differences in clinical characteristics or incidence rates of MACE during 8 years of follow-up.ConclusionsThe disease expression of HCM among index patients and affected relatives carrying P/LP variants in recognized disease genes was similar, with an equal risk of experiencing MACE. These findings provide evidence to support family screening and follow-up of genotype-positive HCM families to improve management and diminish the number of adverse disease complications among relatives

    Magnetism in a lattice of spinor Bose condensates

    Full text link
    We study the ground state magnetic properties of ferromagnetic spinor Bose-Einstein condensates confined in a deep optical lattices. In the Mott insulator regime, the ``mini-condensates'' at each lattice site behave as mesoscopic spin magnets that can interact with neighboring sites through both the static magnetic dipolar interaction and the light-induced dipolar interaction. We show that such an array of spin magnets can undergo a ferromagnetic or anti-ferromagnetic phase transition under the magnetic dipolar interaction depending on the dimension of the confining optical lattice. The ground-state spin configurations and related magnetic properties are investigated in detail

    Axisymmetric versus Non-axisymmetric Vortices in Spinor Bose-Einstein Condensates

    Full text link
    The structure and stability of various vortices in F=1 spinor Bose-Einstein condensates are investigated by solving the extended Gross-Pitaevskii equation under rotation. We perform an extensive search for stable vortices, considering both axisymmetric and non-axisymmetric vortices and covering a wide range of ferromagnetic and antiferromagnetic interactions. The topological defect called Mermin-Ho (Anderson-Toulouse) vortex is shown to be stable for ferromagnetic case. The phase diagram is established in a plane of external rotation Omega vs total magnetization M by comparing the free energies of possible vortices. It is shown that there are qualitative differences between axisymmetric and non-axisymmetric vortices which are manifested in the Omega- and M-dependences.Comment: 9 pages, 9 figure
    • …
    corecore