87,963 research outputs found

    Porous squeeze-film flow

    Get PDF
    The squeeze-film flow of a thin layer of Newtonian fluid filling the gap between a flat impermeable surface moving under a prescribed constant load and a flat thin porous bed coating a stationary flat impermeable surface is considered. Unlike in the classical case of an impermeable bed, in which an infinite time is required for the two surfaces to touch, for a porous bed contact occurs in a finite contact time. Using a lubrication approximation an implicit expression for the fluid layer thickness and an explicit expression for the contact time are obtained and analysed. In addition, the fluid particle paths are calculated, and the penetration depths of fluid particles into the porous bed are determined. In particular, the behaviour in the asymptotic limit of small permeability, in which the contact time is large but finite, is investigated. Finally, the results are interpreted in the context of lubrication in the human knee joint, and some conclusions are drawn about the contact time of the cartilage-coated femoral condyles and tibial plateau and the penetration of nutrients into the cartilage

    Squeeze-Film Flow in the Presence of a Thin Porous Bed, with Application to the Human Knee Joint

    Get PDF
    Motivated by the desire for a better understanding of the lubrication of the human knee joint, the squeeze-film flow of a thin layer of Newtonian fluid (representing the synovial fluid) filling the gap between a flat impermeable surface (representing the femoral condyles) and a flat thin porous bed (representing the articular cartilage) coating a stationary flat impermeable surface (representing the tibial plateau) is considered. As the impermeable surface approaches the porous bed under a prescribed constant load all of the fluid is squeezed out of the gap in a finite contact time. In the context of the knee, the size of this contact time suggests that when a person stands still for a short period of time their knees may be fluid lubricated, but that when they stand still for a longer period of time contact between the cartilage-coated surfaces may occur. The fluid particle paths are calculated, and the penetration depths of fluid particles into the porous bed are determined. In the context of the knee, these penetration depths provide a measure of how far into the cartilage nutrients are carried by the synovial fluid, and suggest that when a person stands still nutrients initially in the fluid layer penetrate only a relatively small distance into the cartilage. However, the model also suggests that the cumulative effect of repeated loading and unloading of the knees during physical activity such as walking or running may be sufficient to carry nutrients deep into the cartilage

    How pairs of partners emerge in an initially fully connected society

    Full text link
    A social group is represented by a graph, where each pair of nodes is connected by two oppositely directed links. At the beginning, a given amount p(i)p(i) of resources is assigned randomly to each node ii. Also, each link r(i,j)r(i,j) is initially represented by a random positive value, which means the percentage of resources of node ii which is offered to node jj. Initially then, the graph is fully connected, i.e. all non-diagonal matrix elements r(i,j)r(i,j) are different from zero. During the simulation, the amounts of resources p(i)p(i) change according to the balance equation. Also, nodes reorganise their activity with time, going to give more resources to those which give them more. This is the rule of varying the coefficients r(i,j)r(i,j). The result is that after some transient time, only some pairs (m,n)(m,n) of nodes survive with non-zero p(m)p(m) and p(n)p(n), each pair with symmetric and positive r(m,n)=r(n,m)r(m,n)=r(n,m). Other coefficients r(m,in)r(m,i\ne n) vanish. Unpaired nodes remain with no resources, i.e. their p(i)=0p(i)=0, and they cease to be active, as they have nothing to offer. The percentage of survivors (i.e. those with with p(i)p(i) positive) increases with the velocity of varying the numbers r(i,j)r(i,j), and it slightly decreases with the size of the group. The picture and the results can be interpreted as a description of a social algorithm leading to marriages.Comment: 7 pages, 3 figure

    Cluster Algorithm Renormalization Group Study of Universal Fluctuations in the 2D Ising Model

    Full text link
    In this paper we propose a novel method to study critical systems numerically by a combined collective-mode algorithm and Renormalization Group on the lattice. This method is an improved version of MCRG in the sense that it has all the advantages of cluster algorithms. As an application we considered the 2D Ising model and studied wether scale invariance or universality are possible underlying mechanisms responsible for the approximate "universal fluctuations" close to a so-called bulk temperature T(L)T^*(L). "Universal fluctuations" was first proposed in [1] and stated that the probability density function of a global quantity for very dissimilar systems, like a confined turbulent flow and a 2D magnetic system, properly normalized to the first two moments, becomes similar to the "universal distribution", originally obtained for the magnetization in the 2D XY model in the low temperature region. The results for the critical exponents and the renormalization group flow of the probability density function are very accurate and show no evidence to support that the approximate common shape of the PDF should be related to both scale invariance or universal behavior.Comment: 6 pages, 4 figures and 3 table

    A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow

    Get PDF
    We use the lubrication approximation to analyse three closely related problems involving a thin rivulet or ridge (i.e. a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical “yield” value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In an Appendix we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations

    Systematic Renormalization in Hamiltonian Light-Front Field Theory

    Get PDF
    We develop a systematic method for computing a renormalized light-front field theory Hamiltonian that can lead to bound states that rapidly converge in an expansion in free-particle Fock-space sectors. To accomplish this without dropping any Fock sectors from the theory, and to regulate the Hamiltonian, we suppress the matrix elements of the Hamiltonian between free-particle Fock-space states that differ in free mass by more than a cutoff. The cutoff violates a number of physical principles of the theory, and thus the Hamiltonian is not just the canonical Hamiltonian with masses and couplings redefined by renormalization. Instead, the Hamiltonian must be allowed to contain all operators that are consistent with the unviolated physical principles of the theory. We show that if we require the Hamiltonian to produce cutoff-independent physical quantities and we require it to respect the unviolated physical principles of the theory, then its matrix elements are uniquely determined in terms of the fundamental parameters of the theory. This method is designed to be applied to QCD, but for simplicity, we illustrate our method by computing and analyzing second- and third-order matrix elements of the Hamiltonian in massless phi-cubed theory in six dimensions.Comment: 47 pages, 6 figures; improved referencing, minor presentation change

    Effects of backing plates on the electron exposure of thin polymer films

    Get PDF
    The effects of backing plates on the radiation dose received by thin nylon films were calculated using recently developed multilayer electron transport codes. The film dose increased with increasing atomic number of the backing plate. The estimated dose could be off by a factor of 2 or more if the backing plate were ignored in the calculations

    A thin rivulet or ridge subject to a uniform transverse\ud shear stress at its free surface due to an external airflow

    Get PDF
    We use the lubrication approximation to analyse three closely related problems involving a thin rivulet or ridge (i.e. a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical “yield” value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In an Appendix we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations

    Homoeopathy

    Get PDF
    Homoeopathy is a system of treating patients using very low dose preparations according to the principle: "like should be cured with like". This paper summarises the research evidence presented in a recent issue of Effective Health Care on the effectiveness of homoeopathy. Increasing numbers of patients are seeking information on complementary medicines from NHS health professionals. Results of a 1998 survey of use and expenditure on complementary medicine in England suggested that 28% of respondents had either visited a complementary therapist or had purchased an over the counter herbal or homoeopathic remedy in the past year. From this survey it was estimated that there could be over 470 000 recent users of homoeopathic remedies in England
    corecore