93 research outputs found

    Coherence of single spins coupled to a nuclear spin bath of varying density

    Get PDF
    The dynamics of single electron and nuclear spins in a diamond lattice with different 13C nuclear spin concentration is investigated. It is shown that coherent control of up to three individual nuclei in a dense nuclear spin cluster is feasible. The free induction decays of nuclear spin Bell states and single nuclear coherences among 13C nuclear spins are compared and analyzed. Reduction of a free induction decay time T2* and a coherence time T2 upon increase of nuclear spin concentration has been found. For diamond material with depleted concentration of nuclear spin, T2* as long as 30 microseconds and T2 of up to 1.8 ms for the electron spin has been observed. The 13C concentration dependence of T2* is explained by Fermi contact and dipolar interactions with nuclei in the lattice. It has been found that T2 decreases approximately as 1/n, where n is 13C concentration, as expected for an electron spin interacting with a nuclear spin bath.Comment: 4 pages, 4 figures, 1 movie (avi), 1 supplementary material (pdf

    BOLD Correlates of Trial-by-Trial Reaction Time Variability in Gray and White Matter: A Multi-Study fMRI Analysis

    Get PDF
    Reaction time (RT) is one of the most widely used measures of performance in experimental psychology, yet relatively few fMRI studies have included trial-by-trial differences in RT as a predictor variable in their analyses. Using a multi-study approach, we investigated whether there are brain regions that show a general relationship between trial-by-trial RT variability and activation across a range of cognitive tasks.The relation between trial-by-trial differences in RT and brain activation was modeled in five different fMRI datasets spanning a range of experimental tasks and stimulus modalities. Three main findings were identified. First, in a widely distributed set of gray and white matter regions, activation was delayed on trials with long RTs relative to short RTs, suggesting delayed initiation of underlying physiological processes. Second, in lateral and medial frontal regions, activation showed a "time-on-task" effect, increasing linearly as a function of RT. Finally, RT variability reliably modulated the BOLD signal not only in gray matter but also in diffuse regions of white matter.The results highlight the importance of modeling trial-by-trial RT in fMRI analyses and raise the possibility that RT variability may provide a powerful probe for investigating the previously elusive white matter BOLD signal

    Graft Copolymer Synthesis

    No full text

    Blood volume changes after radiotherapy of the CNS

    No full text
    Background: The pathogenesis of late delayed radiation damage in normal brain tissue is most likely due to damage to the vascular endothelium. The mitotic activity of gliomas was shown to correlate with the tumor induced angiogenesis. Dynamic susceptibility contrast MR imaging (DSC MRI) allows the measurement of the cerebral hemodynamics based on the indicator dilution theory. We describe theory and technique of the method and present our experience with blood volume measurements after irradiation of the CNS. Methods: We established a double slice technique on a standard 1.5T MR system without hardware modifications, which allows an absolute quantification of the blood volume in regions of interest (ROI) within the brain. Fifty-five T2* weighted double slice images were acquired before, during and after bolus injection of Gd-DTPA (0.1 mmol/kg in 5 sec.) using a SD FLASH sequence (simultaneous dual fast low angle shot, TR/TE1/TE2 31/16/25, flip angle 10°). Concentration-time curves were calculated from the measured signal-time curves. Blood volume values in tissue were normalised and calculated in absolute values (ml/100 g) based on the knowledge of the arterial input function (AIF), which was measured in the brain supplying arteries. The whole procedure requires only 2 to 3 minutes, the time for post processing is about 15 to 20 minutes. Results: Blood volume parameter images of representative cases demonstrate the blood volume changes after radiotherapy. A reduction in blood volume could be observed in normal brain tissue and low-grade gliomas, while recurrent tumors were accompanied by a local increase in blood volume. Conclusions: Radiation induced blood volume changes in the CNS can be measured using dynamic susceptibility contrast MR imaging. The measurements in normal brain tissue allow a functional in-vivo analysis of late delayed radiation reactions of the CNS. The definite value of intratumoral blood volume measurements for determination of the therapeutic success and for differentiation of recurrences versus radionecroses remains to be clarified in further studies
    corecore