57,311 research outputs found
Electron paramagnetic resonance g-tensors from state interaction spin-orbit coupling density matrix renormalization group
We present a state interaction spin-orbit coupling method to calculate
electron paramagnetic resonance (EPR) -tensors from density matrix
renormalization group wavefunctions. We apply the technique to compute
-tensors for the \ce{TiF3} and \ce{CuCl4^2-} complexes, a [2Fe-2S] model of
the active center of ferredoxins, and a \ce{Mn4CaO5} model of the S2 state of
the oxygen evolving complex. These calculations raise the prospects of
determining -tensors in multireference calculations with a large number of
open shells.Comment: 19 page
Gravastars and Black Holes of Anisotropic Dark Energy
Dynamical models of prototype gravastars made of anisotropic dark energy are
constructed, in which an infinitely thin spherical shell of a perfect fluid
with the equation of state divides the whole spacetime
into two regions, the internal region filled with a dark energy fluid, and the
external Schwarzschild region. The models represent "bounded excursion" stable
gravastars, where the thin shell is oscillating between two finite radii, while
in other cases they collapse until the formation of black holes. Here we show,
for the first time in the literature, a model of gravastar and formation of
black hole with both interior and thin shell constituted exclusively of dark
energy. Besides, the sign of the parameter of anisotropy () seems to
be relevant to the gravastar formation. The formation is favored when the
tangential pressure is greater than the radial pressure, at least in the
neighborhood of the isotropic case ().Comment: 16 pages, 8 figures. Accepted for publication in Gen. Rel. Gra
A metapopulation model with Markovian landscape dynamics
We study a variant of Hanski's incidence function model that allows habitat
patch characteristics to vary over time following a Markov process. The widely
studied case where patches are classified as either suitable or unsuitable is
included as a special case. For large metapopulations, we determine a recursion
for the probability that a given habitat patch is occupied. This recursion
enables us to clarify the role of landscape dynamics in the survival of a
metapopulation. In particular, we show that landscape dynamics affects the
persistence and equilibrium level of the metapopulation primarily through its
effect on the distribution of a local population's life span.Comment: This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0
Design and application of gas-gap heat switches
Gas-gap heat switches can serve as an effective means of thermally disconnecting a standby cryocooler when the primary (operating) cooler is connected and vice versa. The final phase of the development and test of a cryogenic heat switch designed for loads ranging from 2 watts at 8 K, to 100 watts at 80 K are described. Achieved heat-switch on/off conductance ratio ranged from 11,000 at 8 K to 2200 at 80 K. A particularly challenging element of heat-switch design is achieving satisfactory operation when large temperatures differentials exist across the switch. A special series of tests and analyses was conducted and used in this Phase-2 activity to evaluate the developed switches for temperature differentials ranging up to 200 K. Problems encountered at the maximum levels are described and analyzed, and means of avoiding the problems in the future are presented. A comprehensive summary of the overall heat-switch design methodology is also presented with special emphasis on lessons learned over the course of the 4-year development effort
Adsorbate Electric Fields on a Cryogenic Atom Chip
We investigate the behaviour of electric fields originating from adsorbates
deposited on a cryogenic atom chip as it is cooled from room temperature to
cryogenic temperature. Using Rydberg electromagnetically induced transparency
we measure the field strength versus distance from a 1 mm square of YBCO
patterned onto a YSZ chip substrate. We find a localized and stable dipole
field at room temperature and attribute it to a saturated layer of chemically
adsorbed rubidium atoms on the YBCO. As the chip is cooled towards 83 K we
observe a change in sign of the electric field as well as a transition from a
localized to a delocalized dipole density. We relate these changes to the onset
of physisorption on the chip surface when the van der Waals attraction
overcomes the thermal desorption mechanisms. Our findings suggest that, through
careful selection of substrate materials, it may be possible to reduce the
electric fields caused by atomic adsorption on chips, opening up experiments to
controlled Rydberg-surface coupling schemes.Comment: 5 pages, 4 figure
The Gene Ontology: enhancements for 2011
The Gene Ontology (GO) (http://www.geneontology.org) is a community bioinformatics resource that represents gene product function through the use of structured, controlled vocabularies. The number of GO annotations of gene products has increased due to curation efforts among GO Consortium (GOC) groups, including focused literature-based annotation and ortholog-based functional inference. The GO ontologies continue to expand and improve as a result of targeted ontology development, including the introduction of computable logical definitions and development of new tools for the streamlined addition of terms to the ontology. The GOC continues to support its user community through the use of e-mail lists, social media and web-based resources
Heterogeneity, Communication, Coordination and Voluntary Provision of a Public Good
The results of twenty-four laboratory sessions are evaluated with respect to the role of alternative definitions of equity when communication is introduced into an environment in which voluntary contributions determine the level of public good provision to small groups of individuals. Individuals experience both non-communication and communication treatments. Additional treatments include the extent to which subjects have information about others’ payoffs from (preferences for) the consumption of public goods and about others’ incomes and payoff functions (preferences). With communication, participants in incomplete information environments are less able to coordinate their contributions while those in complete information environments succeed more often. Under complex heterogeneity payoff distributions widen with the introduction of communication. The data do not support the emergence of a particular pattern of coordination across all treatments.
Tensor factorizations of local second-order M{\o}ller Plesset theory
Efficient electronic structure methods can be built around efficient tensor
representations of the wavefunction. Here we describe a general view of tensor
factorization for the compact representation of electronic wavefunctions. We
use these ideas to construct low-complexity representations of the doubles
amplitudes in local second order M{\o}ller-Plesset perturbation theory. We
introduce two approximations - the direct orbital specific virtual
approximation and the full orbital specific virtual approximation. In these
approximations, each occupied orbital is associated with a small set of
correlating virtual orbitals. Conceptually, the representation lies between the
projected atomic orbital representation in Pulay-Saeb{\o} local correlation
theories and pair natural orbital correlation theories. We have tested the
orbital specific virtual approximations on a variety of systems and properties
including total energies, reaction energies, and potential energy curves.
Compared to the Pulay-Saeb{\o} ansatz, we find that these approximations
exhibit favourable accuracy and computational times, while yielding smooth
potential energy curves
A simulation model for wind energy storage systems. Volume 1: Technical report
A comprehensive computer program for the modeling of wind energy and storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic) was developed. The level of detail of Simulation Model for Wind Energy Storage (SIMWEST) is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. The first program is a precompiler which generates computer models (in FORTRAN) of complex wind source storage application systems, from user specifications using the respective library components. The second program provides the techno-economic system analysis with the respective I/O, the integration of systems dynamics, and the iteration for conveyance of variables. SIMWEST program, as described, runs on the UNIVAC 1100 series computers
Constitutive modeling for isotropic materials
The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material
- …