19 research outputs found

    Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer Science + Business Media, LLC 2008Background - Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model. Methods - Three crosslinked CEM variants (XCEM0005, XCEM001, and XCEM0033) with different degree of crosslinking were produced. An ex vivo peristaltic inflation model was established. Porcine small intestine segments were stapled on one end, using buttressed or non-buttressed surgical staplers. The opened, non-stapled ends were connected to a peristaltic pump and pressure transducer and sealed. The staple lines were then exposed to increased intraluminal pressure in a peristaltic manner. Both the leak and burst pressures of the test specimens were recorded. Results - The leak pressures observed for non-crosslinked NCEM (137.8 ± 22.3 mmHg), crosslinked XCEM0005 (109.1 ± 14.1 mmHg), XCEM001 (150.1 ± 16.0 mmHg), XCEM0033 (98.8 ± 10.5 mmHg) reinforced staple lines were significantly higher when compared to non-buttressed control (28.3 ± 10.8 mmHg) and SIS (one and four layers) (62.6 ± 11.8 and 57.6 ± 12.3 mmHg, respectively) buttressed staple lines. NCEM and XCEM were comparable to that observed for BP buttressed staple lines (138.8 ± 3.6 mmHg). Only specimens with reinforced staple lines were able to achieve high intraluminal pressures (ruptured at the intestinal mesentery), indicating that buttress reinforcements were able to withstand pressure higher than that of natural tissue (physiological failure). Conclusions - These findings suggest that the use of CEM and XCEM as buttressing materials is associated with reinforced staple lines and increased leak pressures when compared to non-buttressed staple lines. CEM and XCEM were found to perform comparably with clinically available buttress materials in this ex vivo model.Enterprise Irelan

    BioGlue and Peri-strips in lung volume reduction surgery : pilot randomised controlled trial

    Get PDF
    Background Both tissue sealants and buttressing have been advocated to reduce alveolar air leaks from staple lines following Lung Volume Reduction Surgery (LVRS). However, the long term detrimental effects of buttressing material are increasingly apparent. We performed a pilot prospective randomised self controlled trial in patients undergoing LVRS comparing BioGlue and Peri-strips as adjuncts in preventing alveolar air-leaks. Methods A pilot prospective self controlled clinical trial was conducted in patients undergoing LVRS. Each patient was treated with BioGlue on one side and pericardial buttress on the other side as an adjunct to the staple line. The sides were randomised for adjuncts with each patient acting as his own control. Duration of air leak, intercostal drainage and time to chest drain removal were the study end points. Results 10 patients undergoing the procedure were recruited between December 2005 and October 2007. There were 6 men and the mean age was 59.8 ± 4.9 years. There was one mortality due to multi-organ failure. The BioGlue treated side had a shorter mean duration of air-leak (3.0 ± 4.6 versus 6.5 ± 6.9 days), lesser chest drainage volume (733 ± 404 ml versus 1001 ± 861) and shorter time to chest drain removal (9.7 ± 10.6 versus 11.5 ± 11.1 days) compared with Peri-strips. Conclusion This study demonstrates comparable efficacy of BioGlue and Peri-strips, however there is a trend favouring the BioGlue treated side in terms of reduction in air-leak, chest drainage volumes, duration of chest drainage and significant absence of complications. A larger sample size is needed to validate this result

    DNA methylation analysis of tumor suppressor genes in liquid biopsy components of early stage NSCLC: a promising tool for early detection

    No full text
    Purpose: Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) analysis represents a liquid biopsy approach for real-time monitoring of tumor evolution. DNA methylation is considered to be an early event in the process of cancer development and progression. The aim of the present study was to evaluate whether detection of DNA methylation of selected tumor suppressor genes in CTC and matched ctDNA provides prognostic information in early stage NSCLC. Experimental design: The methylation status of five selected gene promoters (APC, RASSFIA1, FOXA1, SLFN11, SHOX2) was examined by highly specific and sensitive real-time methylation specific PCR assays in: (a) a training group of 35 primary tumors and their corresponding adjacent non-cancerous tissues of early stage NSCLC patients, (b) a validation group of 22 primary tumor tissues (FFPEs) and 42 peripheral blood samples of early stage NSCLC patients. gDNA was isolated from FFPEs, CTCs (size-based enriched by Parsortix; Angle and plasma, and (c) a control group of healthy blood donors (n = 12). Results: All five gene promoters tested were highly methylated in the training group; methylation of SHOX2 promoter in primary tumors was associated with unfavorable outcome. RASSFIA and APC were found methylated in plasma-cfDNA samples at 14.3% and 11.9%, respectively, whereas in the corresponding CTCs SLFN11 and APC promoters were methylated in 7.1%. The incidence of relapses was higher in patients with a) promoter methylation of APC and SLFN11 in plasma-cfDNA (P = 0.037 and P = 0.042 respectively) and b) at least one detected methylated gene promoter in CTC or plasma-cfDNA (P = 0.015). Conclusions: DNA methylation of these five gene promoters was significantly lower in CTCs and plasma-cfDNA than in the primary tumors. Combination of DNA methylation analysis in CTC and plasma-cfDNA was associated with worse DFI of NSCLC patients. Additional studies are required to validate our findings in a large cohort of early stage NSCLC patients. © 2022, The Author(s)

    Lung tumor MHCII immunity depends on in situ antigen presentation by fibroblasts

    No full text
    A key unknown of the functional space in tumor immunity is whether CD4 T cells depend on intratumoral MHCII cancer antigen recognition. MHCII-expressing, antigen-presenting cancer-associated fibroblasts (apCAFs) have been found in breast and pancreatic tumors and are considered to be immunosuppressive. This analysis shows that antigen-presenting fibroblasts are frequent in human lung non-small cell carcinomas, where they seem to actively promote rather than suppress MHCII immunity. Lung apCAFs directly activated the TCRs of effector CD4 T cells and at the same time produced C1q, which acted on T cell C1qbp to rescue them from apoptosis. Fibroblast-specific MHCII or C1q deletion impaired CD4 T cell immunity and accelerated tumor growth, while inducing C1qbp in adoptively transferred CD4 T cells expanded their numbers and reduced tumors. Collectively, we have characterized in the lungs a subset of antigen-presenting fibroblasts with tumor-suppressive properties and propose that cancer immunotherapies might be strongly dependent on in situ MHCII antigen presentation. © 2022 Kerdidani et al

    Generation of non‐small cell lung cancer patient‐derived xenografts to study intratumor heterogeneity

    No full text
    Recent advances in sequencing technologies have allowed the in‐depth molecular study of tumors, even at the single cell level. Sequencing efforts have uncovered a previously unappreci-ated heterogeneity among tumor cells, which has been postulated to be the driving force of tumor evolution and to facilitate recurrence, metastasis, and drug resistance. In the current study, focused on early‐stage operable non‐small cell lung cancer, we used tumor growth in patient‐derived xeno-graft (PDX) models in mice as a fast‐forward tumor evolution process to investigate the molecular characteristics of tumor cells that grow in mice, as well as the parameters that affect the grafting efficiency. We found that squamous cell carcinomas grafted significantly more efficiently compared with adenocarcinomas. Advanced stage, patient age and primary tumor size were positively correlated with grafting. Additionally, we isolated and characterized circulating tumor cells (CTC) from patients’ peripheral blood and found that the presence of CTCs expressing epithelial‐to‐mesenchy-mal (EMT) markers correlated with the grafting potential. Interestingly, exome sequencing of the PDX tumor identified genetic alterations in DNA repair and genome integrity genes that were un-der‐represented in the human primary counterpart. In conclusion, through the generation of a PDX biobank of NSCLC, we identified the clinical and molecular properties of tumors that affected growth in mice. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma

    No full text
    Lung adenocarcinoma (LUAD)-derived Wnts increase cancer cell proliferative/stemness potential, but whether they impact the immune microenvironment is unknown. Here we show that LUAD cells use paracrine Wnt1 signaling to induce immune resistance. In TCGA, Wnt1 correlates strongly with tolerogenic genes. In another LUAD cohort, Wnt1 inversely associates with T cell abundance. Altering Wnt1 expression profoundly affects growth of murine lung adenocarcinomas and this is dependent on conventional dendritic cells (cDCs) and T cells. Mechanistically, Wnt1 leads to transcriptional silencing of CC/CXC chemokines in cDCs, T cell exclusion and cross-tolerance. Wnt-target genes are up-regulated in human intratumoral cDCs and decrease upon silencing Wnt1, accompanied by enhanced T cell cytotoxicity. siWnt1-nanoparticles given as single therapy or part of combinatorial immunotherapies act at both arms of the cancer-immune ecosystem to halt tumor growth. Collectively, our studies show that Wnt1 induces immunologically cold tumors through cDCs and highlight its immunotherapeutic targeting. © 2019, The Author(s)
    corecore