75 research outputs found

    Római villa Balácán

    Get PDF

    The McCoy-Wu Model in the Mean-field Approximation

    Full text link
    We consider a system with randomly layered ferromagnetic bonds (McCoy-Wu model) and study its critical properties in the frame of mean-field theory. In the low-temperature phase there is an average spontaneous magnetization in the system, which vanishes as a power law at the critical point with the critical exponents β3.6\beta \approx 3.6 and β14.1\beta_1 \approx 4.1 in the bulk and at the surface of the system, respectively. The singularity of the specific heat is characterized by an exponent α3.1\alpha \approx -3.1. The samples reduced critical temperature tc=TcavTct_c=T_c^{av}-T_c has a power law distribution P(tc)tcωP(t_c) \sim t_c^{\omega} and we show that the difference between the values of the critical exponents in the pure and in the random system is just ω3.1\omega \approx 3.1. Above the critical temperature the thermodynamic quantities behave analytically, thus the system does not exhibit Griffiths singularities.Comment: LaTeX file with iop macros, 13 pages, 7 eps figures, to appear in J. Phys.

    The Random-bond Potts model in the large-q limit

    Full text link
    We study the critical behavior of the q-state Potts model with random ferromagnetic couplings. Working with the cluster representation the partition sum of the model in the large-q limit is dominated by a single graph, the fractal properties of which are related to the critical singularities of the random Potts model. The optimization problem of finding the dominant graph, is studied on the square lattice by simulated annealing and by a combinatorial algorithm. Critical exponents of the magnetization and the correlation length are estimated and conformal predictions are compared with numerical results.Comment: 7 pages, 6 figure

    Surface critical behavior of random systems at the ordinary transition

    Full text link
    We calculate the surface critical exponents of the ordinary transition occuring in semi-infinite, quenched dilute Ising-like systems. This is done by applying the field theoretic approach directly in d=3 dimensions up to the two-loop approximation, as well as in d=4ϵd=4-\epsilon dimensions. At d=4ϵd=4-\epsilon we extend, up to the next-to-leading order, the previous first-order results of the ϵ\sqrt{\epsilon} expansion by Ohno and Okabe [Phys.Rev.B 46, 5917 (1992)]. In both cases the numerical estimates for surface exponents are computed using Pade approximants extrapolating the perturbation theory expansions. The obtained results indicate that the critical behavior of semi-infinite systems with quenched bulk disorder is characterized by the new set of surface critical exponents.Comment: 11 pages, 11 figure

    37th International Symposium on Intensive Care and Emergency Medicine (part 3 of 3)

    Full text link

    A Sequential 3D Curve-Thinning Algorithm Based on Isthmuses

    No full text

    Topology Preserving Parallel Smoothing for 3D Binary Images

    No full text
    corecore