127 research outputs found

    Social Opportunity Causes Rapid Transcriptional Changes in the Social Behaviour Network of the Brain in an African Cichlid Fish

    Get PDF
    Animals constantly integrate external stimuli with their own internal physiological state to make appropriate behavioural decisions. Little is known, however, about where in the brain the salience of these signals is evaluated, or which neural and transcriptional mechanisms link this integration to adaptive behaviours. We used an African cichlid fish Astatotilapia burtoni to test the hypothesis that a new social opportunity activates the conserved \u27social behaviour network\u27 (SBN), a collection of brain nuclei known to regulate social behaviours across vertebrates. We measured mRNA levels of immediate early genes (IEGs) in microdissected brain regions as a proxy for neuronal activation, and discovered that IEGs were higher in all SBN nuclei in males that were given an opportunity to rise in social rank compared to control stable subordinate and dominant individuals. Furthermore, because the presence of sex-steroid receptors is one defining criteria of SBN nuclei, we also tested whether social opportunity or status influenced androgen and oestrogen receptor mRNA levels within these same regions. There were several rapid region-specific changes in receptor mRNA levels induced by social opportunity, most notably in oestrogen receptor subtypes in areas that regulate social aggression and reproduction, suggesting that oestrogenic signalling pathways play an important role in regulating male status. Several receptor mRNA changes occurred in regions with putative homologies to the mammalian septum and extended amygdala, two regions shared by SBN and reward circuits, suggesting an important role in the integration of social salience, stressors, hormonal state and adaptive behaviours. We also demonstrated increases in plasma sex- and stress-steroids at 30 min after a rise in social rank. This rapid endocrine and transcriptional response suggests that the SBN is involved in the integration of social inputs with internal hormonal state to facilitate the transition to dominant status, which ultimately leads to improved fitness for the previously reproductively-suppressed individual. Β© 2012 British Society for Neuroendocrinology

    Muonium as a shallow center in GaN

    Get PDF
    A paramagnetic muonium (Mu) state with an extremely small hyperfine parameter was observed for the first time in single-crystalline GaN below 25 K. It has a highly anisotropic hyperfine structure with axial symmetry along the [0001] direction, suggesting that it is located either at a nitrogen-antibonding or a bond-centered site oriented parallel to the c-axis. Its small ionization energy (=< 14 meV) and small hyperfine parameter (--10^{-4} times the vacuum value) indicate that muonium in one of its possible sites produces a shallow state, raising the possibility that the analogous hydrogen center could be a source of n-type conductivity in as-grown GaN.Comment: 4 figures, to be published in Phys. Rev. Letter

    Nitrogen ion beam synthesis of InN in InP (100) at elevated temperature

    Full text link
    InN phase is grown in crystalline InP(100) substrates by 50 keV N+ implantation at an elevated temperature of 400 deg C followed by annealing at 525 deg C in N2 ambient. Crystallographic structural and Raman scattering studies are performed for the characterization of grown phases. Temperature- and power-dependent photoluminescence studies show direct band-to-band transition peak ~1.06 eV at temperatures <=150K. Implantations at an elevated temperature with a low ion beam current and subsequent low temperature annealing step are found responsible for the growth of high-quality InN phase.Comment: 11 pages, 4 figures, Journa

    Transcriptomic response to aquaculture intensification in Nile tilapia

    Get PDF
    To meet future global demand for fish protein, more fish will need to be farmed usingfewer resources, and this will require the selection of nonaggressive individuals thatperform well at high densities. Yet, the genetic changes underlying loss of aggressionand adaptation to crowding during aquaculture intensification are largely unknown.We examined the transcriptomic response to aggression and crowding in Nile tilapia,one of the oldest and most widespread farmed fish, whose social structure shiftsfrom social hierarchies to shoaling with increasing density. A mirror test was usedto quantify aggression and skin darkening (a proxy for stress) of fish reared at lowand high densities, and gene expression in the hypothalamus was analysed amongthe most and least aggressive fish at each density. Fish reared at high density weredarker, had larger brains, were less active and less aggressive than those reared atlow density and had differentially expressed genes consistent with a reactive stress-copingstyle and activation of the hypothalamus–pituitary–interrenal (HPI) axis.Differences in gene expression among aggressive fish were accounted for by densityand the interaction between density and aggression levels, whereas for non-aggressivefish differences in gene expression were associated with individual variation inskin brightness and social stress. Thus, the response to crowding in Nile tilapia iscontext dependent and involves different neuro-endocrine pathways, depending onsocial status. Knowledge of genes associated with the response to crowding maypave the way for more efficient fish domestication, based on the selection of non-aggressiveindividuals with increasing tolerance to chronic stress necessary for aquacultureintensification

    Gaia Data Release 2: Properties and validation of the radial velocities

    Get PDF
    Context. For Gaia DR2, 280 million spectra collected by the Radial Velocity Spectrometer instrument on board Gaia were processed, and median radial velocities were derived for 9.8 million sources brighter than GRVS = 12 mag. Aims. This paper describes the validation and properties of the median radial velocities published in Gaia DR2. Methods. Quality tests and filters were applied to select those of the 9.8 million radial velocities that have the quality to be published in Gaia DR2. The accuracy of the selected sample was assessed with respect to ground-based catalogues. Its precision was estimated using both ground-based catalogues and the distribution of the Gaia radial velocity uncertainties. Results. Gaia DR2 contains median radial velocities for 7 224 631 stars, with Teff in the range [3550, 6900] K, which successfully passed the quality tests. The published median radial velocities provide a full-sky coverage and are complete with respect to the astrometric data to within 77.2% (for G larger than or equal to 12.5 mag). The median radial velocity residuals with respect to the ground-based surveys vary from one catalogue to another, but do not exceed a few 100 m s-1. In addition, the Gaia radial velocities show a positive trend as a function of magnitude, which starts around GRVS - 9 mag and reaches about +500 m s-1 at GRVS = 11.75 mag. The origin of the trend is under investigation, with the aim to correct for it in Gaia DR3. The overall precision, estimated from the median of the Gaia radial velocity uncertainties, is 1.05 km s-1. The radial velocity precision is a function of many parameters, in particular, the magnitude and effective temperature. For bright stars, GRVS E [4, 8] mag, the precision, estimated using the full dataset, is in the range 220-350 m s-1, which is about three to five times more precise than the pre-launch specification of 1 km s-1. At the faint end, GRVS = 11.75 mag, the precisions for Teff = 5000 and 6500 K are 1.4 and 3.7 km s-1, respectively.Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. Most of the authors are current or past members of the ESA Gaia mission team and of the Gaia DPAC and their work has been supported by the French Centre National de la Recherche Scientifique (CNRS), the Centre National d’Etudes Spatiales (CNES), the Agence Nationale de la Recherche, the RΓ©gion Aquitaine, the UniversitΓ© de Bordeaux, the Utinam Institute of the UniversitΓ© de Franche-ComtΓ©, and the Institut des Sciences de l’ Univers (INSU); the Science and Technology Facilities Council and the United Kingdom Space Agency; the Belgian Federal Science Policy Office (BELSPO) through various Programme de DΓ©veloppement d’ExpΓ©riences Scientifiques (PRODEX) grants; the German Aerospace Agency (Deutsches Zentrum fur Luft- und Raumfahrt e.V., DLR); the Algerian Centre de Recherche en Astronomie, Astrophysique et GΓ©ophysique of Bouzareah Observatory; the Swiss State Secretariat for Education, Research, and Innovation through the ESA PRODEX programme, the Mesures d’Accompagnement, the Swiss ActivitΓ©s Nationales ComplΓ©mentaires, and the Swiss National Science Foundation; the Slovenian Research Agency (research core funding No. P1-0188

    Evolution of ligand specificity in vertebrate corticosteroid receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Corticosteroid receptors include mineralocorticoid (MR) and glucocorticoid (GR) receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear.</p> <p>Results</p> <p>We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC]) to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (<it>Mus musculus</it>) and the midshipman fish (<it>Porichthys notatus</it>), a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (<it>Neolamprologus pulcher</it>), another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences.</p> <p>Conclusion</p> <p>The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs.</p

    Steroid receptor expression in the fish inner ear varies with sex, social status, and reproductive state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gonadal and stress-related steroid hormones are known to influence auditory function across vertebrates but the cellular and molecular mechanisms responsible for steroid-mediated auditory plasticity at the level of the inner ear remain unknown. The presence of steroid receptors in the ear suggests a direct pathway for hormones to act on the peripheral auditory system, but little is known about which receptors are expressed in the ear or whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA expression levels of multiple steroid receptor subtypes (estrogen receptors: ERΞ±, ERΞ²a, ERΞ²b; androgen receptors: ARΞ±, ARΞ²; corticosteroid receptors: GR2, GR1a/b, MR) and aromatase in the main hearing organ of the inner ear (saccule) in the highly social African cichlid fish <it>Astatotilapia burtoni</it>, and tested whether these receptor levels were correlated with circulating steroid concentrations.</p> <p>Results</p> <p>We show that multiple steroid receptor subtypes are expressed within the main hearing organ of a single vertebrate species, and that expression levels differ between the sexes. We also show that steroid receptor subtype-specific changes in mRNA expression are associated with reproductive phase in females and social status in males. Sex-steroid receptor mRNA levels were negatively correlated with circulating estradiol and androgens in both males and females, suggesting possible ligand down-regulation of receptors in the inner ear. In contrast, saccular changes in corticosteroid receptor mRNA levels were not related to serum cortisol levels. Circulating steroid levels and receptor subtype mRNA levels were not as tightly correlated in males as compared to females, suggesting different regulatory mechanisms between sexes.</p> <p>Conclusions</p> <p>This is the most comprehensive study of sex-, social-, and reproductive-related steroid receptor mRNA expression in the peripheral auditory system of any single vertebrate. Our data suggest that changes in steroid receptor mRNA expression in the inner ear could be a regulatory mechanism for physiological state-dependent auditory plasticity across vertebrates.</p

    Visual Information Alone Changes Behavior and Physiology during Social Interactions in a Cichlid Fish (Astatotilapia burtoni)

    Get PDF
    Social behavior can influence physiological systems dramatically yet the sensory cues responsible are not well understood. Behavior of male African cichlid fish, Astatotilapia burtoni, in their natural habitat suggests that visual cues from conspecifics contribute significantly to regulation of social behavior. Using a novel paradigm, we asked whether visual cues alone from a larger conspecific male could influence behavior, reproductive physiology and the physiological stress response of a smaller male. Here we show that just seeing a larger, threatening male through a clear barrier can suppress dominant behavior of a smaller male for up to 7 days. Smaller dominant males being β€œattacked” visually by larger dominant males through a clear barrier also showed physiological changes for up to 3 days, including up-regulation of reproductive- and stress-related gene expression levels and lowered plasma 11-ketotestesterone concentrations as compared to control animals. The smaller males modified their appearance to match that of non-dominant males when exposed to a larger male but they maintained a physiological phenotype similar to that of a dominant male. After 7 days, reproductive- and stress- related gene expression, circulating hormone levels, and gonad size in the smaller males showed no difference from the control group suggesting that the smaller male habituated to the visual intruder. However, the smaller male continued to display subordinate behaviors and assumed the appearance of a subordinate male for a full week despite his dominant male physiology. These data suggest that seeing a larger male alone can regulate the behavior of a smaller male but that ongoing reproductive inhibition depends on additional sensory cues. Perhaps, while experiencing visual social stressors, the smaller male uses an opportunistic strategy, acting like a subordinate male while maintaining the physiology of a dominant male

    Dual Roles of an Algal Farming Damselfish as a Cultivator and Opportunistic Browser of an Invasive Seaweed

    No full text
    Abstract Herbivory is a fundamental process determining reef resilience, and while algal farming damselfishes can help shape benthic assemblages, an understanding of their contribution to areas outside of defended territories is relatively unexplored. Here, we demonstrate how the farming damselfish Stegastes marginatus plays a dual role in benthic structuring by 1) contributing to persistence of the invasive macroalga Acanthophora spicifera within a Hawaiian marine protected area, where the macroalga occurred exclusively inside Stegastes territories, and 2) behaving as an opportunistic browser of the exotic alga outside their territorial borders. Greater than 50% of the biomass of tethered A. spicifera was consumed within one-hour when placed outside Stegastes territories, compared to ,5% lost from tethers within territories or herbivore exclusion cages. In situ remote video revealed that tethered A. spicifera located outside territories was grazed primarily by the surgeonfish Acanthurus nigrofuscus (,68% of total bites) and, surprisingly, by S. marginatus (,27% of total bites) that left their territories to feed on this resource on 107 occasions during 400 min of filming. Further, for over half of those occurrences where S. marginatus grazed on the tethered macroalga outside of territories, they fed alongside conspecifics and other species, displaying little of the aggressiveness that characterizes this damselfish. These results show that S. marginatus plays a wider role in determining benthic assemblages than previously recognized, acting both as cultivators of a canopy-forming invasive macroalga within their territories, and as opportunistic browsers in neighboring sites. Consequently, S. marginatus can affect benthic species composition across their territory borders. These results provide a rare example of interspecific facilitation of an exotic alga by an indigenous marine fish. Accounting for fish behaviors more broadly is important to further our understanding of ecological processes that shape reef ecosystems to improve management of MPAs that often support extensive farming damselfish populations
    • …
    corecore