35,750 research outputs found

    Intensity correlations and entanglement by frequency doubling in a dual ported resonator

    Full text link
    We show that non-classical intensity correlations and quadrature entanglement can be generated by frequency doubling in a resonator with two output ports. We predict twin-beam intensity correlations 6 dB below the coherent state limit, and that the product of the inference variances of the quadrature fluctuations gives an Einstein-Podolsky-Rosen (EPR) correlation coefficient of V_EPR = 0.6 < 1. Comparison with an entanglement source based on combining two frequency doublers with a beam splitter shows that the dual ported resonator provides stronger entanglement at lower levels of individual beam squeezing. Calculations are performed using a self-consistent propagation method that does not invoke a mean field approximation. Results are given for physically realistic parameters that account for the Gaussian shape of the intracavity beams, as well as intracavity losses.Comment: 12 pages, 9 figures, normalization corrected, fig 3 and fig 7 update

    Supporting siblings of children with a special educational need or disability : an evaluation of Sibs Talk, a one‐to‐one intervention delivered by staff in mainstream schools

    Get PDF
    A group often overlooked for specific supports in schools are siblings of children with a disability, special educational needs or a serious long‐term condition (SEND). In this article we review the current sibling research and identify a lack of literature on interventions, particularly within a school context. We then present a description of Sibs Talk, an example of a new school‐based intervention to support siblings. Sibs Talk is a ten‐session, one‐to‐one intervention approach for schools to complete with Key Stage 2 children who have a brother or sister with SEND. Finally, we present an initial evaluation of the effectiveness of Sibs Talk, using a pre and post evaluation format with a sample of 55 children from 11 schools. The data presented in this evaluation indicate that Sibs Talk may have contributed to positive outcomes for participating children

    A Multi-Factor Analysis of AREIT Returns

    Get PDF
    Since 1990, the Australian Real Estate Investment Trust (AREIT) sector has experienced substantial growth and popularity. While the AREIT sector had benefit from the increased flow of funds from institutional investors during the 1997 Asian financial crisis, the recent impact of the 2008 global financial crisis has been a negative one. In this paper, we examine the sensitivities of annualised AREIT returns against a set of seven firm-specific variables and four market-wide risk variables. Balanced and unbalanced panel regressions are conducted on three sub-periods during 1990 - 2008 corresponding to the major phases in evolution of the AREIT sector. Our regression results find that size has a negative impact on returns, and this effect has been diminishing over time. Overall market risk was also found to be significant and positive only since 2003, suggesting that recently AREITs behave more like stocks and less like defensive assets. The relationship with exchange rate risk has been positive in recent years, due to more AREITs choosing to diversify internationally, particularly in the U.S. property markets. Our findings on the relationship between market-to-book ratios and AREIT returns depart from standard finance literature. In comparison to REITs in other countries, AREITs have shifted their preferences away from property-type diversification and into more specialised investment strategies. We also find contrasting evidence on the impact of international diversification, and that domestic AREITs provide better returns than internationally diversified counterparts. The relationship between returns and short term interest rates was found to be positive and significant prior to 2002, and the relationship with long-term interest rates was found to be negative and significant since 2003, suggesting that AREITs exhibit less bond-like characteristics in the past five years.AREITs, AREIT returns, Property-type diversification, International diversification, Panel regressions

    Measurement of Spin Polarization by Andreev Reflection in Ferromagnetic In1-xMnxSb Epilayers

    Full text link
    We carried out Point Contact Andreev Reflection (PCAR) spin spectroscopy measurements on epitaxially-grown ferromagnetic In1-xMnxSb epilayers with a Curie temperature of ~9K. The spin sensitivity of PCAR in this material was demonstrated by parallel control studies on its non-magnetic analog, In1-yBeySb. We found the conductance curves of the Sn point contacts with In1-yBeySb to be fairly conventional, with the possible presence of proximity-induced superconductivity effects at the lowest temperatures. The experimental Z-values of interfacial scattering agreed well with the estimates based on the Fermi velocity mismatch between the semiconductor and the superconductor. These measurements provided control data for subsequent PCAR measurements on ferromagnetic In1-xMnxSb, which indicated spin polarization in In1-xMnxSb to be 52 +- 3%

    3D freeform surfaces from planar sketches using neural networks

    Get PDF
    A novel intelligent approach into 3D freeform surface reconstruction from planar sketches is proposed. A multilayer perceptron (MLP) neural network is employed to induce 3D freeform surfaces from planar freehand curves. Planar curves were used to represent the boundaries of a freeform surface patch. The curves were varied iteratively and sampled to produce training data to train and test the neural network. The obtained results demonstrate that the network successfully learned the inverse-projection map and correctly inferred the respective surfaces from fresh curves

    Finite temperature Casimir pistons for electromagnetic field with mixed boundary conditions and its classical limit

    Full text link
    In this paper, the finite temperature Casimir force acting on a two-dimensional Casimir piston due to electromagnetic field is computed. It was found that if mixed boundary conditions are assumed on the piston and its opposite wall, then the Casimir force always tends to restore the piston towards the equilibrium position, regardless of the boundary conditions assumed on the walls transverse to the piston. In contrary, if pure boundary conditions are assumed on the piston and the opposite wall, then the Casimir force always tend to pull the piston towards the closer wall and away from the equilibrium position. The nature of the force is not affected by temperature. However, in the high temperature regime, the magnitude of the Casimir force grows linearly with respect to temperature. This shows that the Casimir effect has a classical limit as has been observed in other literatures.Comment: 14 pages, 3 figures, accepted by Journal of Physics

    Generalised risk-sensitive control with full and partial state observation

    Get PDF
    This paper generalises the risk-sensitive cost functional by introducing noise dependent penalties on the state and control variables. The optimal control problems for the full and partial state observation are considered. Using a change of probability measure approach, explicit closed-form solutions are found in both cases. This has resulted in a new risk-sensitive regulator and filter, which are generalisations of the well-known classical results

    Vibrations of closed-shell Lennard-Jones icosahedral and cuboctahedral clusters and their effect on the cluster ground state energy

    Full text link
    Vibrational spectra of closed shell Lennard-Jones icosahedral and cuboctahedral clusters are calculated for shell numbers between 2 and 9. Evolution of the vibrational density of states with the cluster shell number is examined and differences between icosahedral and cuboctahedral clusters described. This enabled a quantum calculation of quantum ground state energies of the clusters in the quasiharmonic approximation and a comparison of the differences between the two types of clusters. It is demonstrated that in the quantum treatment, the closed shell icosahedral clusters binding energies differ from those of cuboctahedral clusters more than is the case in classical treatment

    The Physics of Supernova Remnant Blast Waves. I. Kinematics of DEM L71 in the Large Magellanic Cloud

    Full text link
    We present the results from Fabry-Perot imaging spectroscopy of the Balmer-dominated supernova remnant DEM L71 (0505-67.9) in the LMC. Spectra extracted from the entire circumference of the blast wave reveal the broad and narrow component H-alpha line emission characteristic of non-radiative shocks in partially neutral gas. The new spectra of DEM L71 include portions of the rim that have not been previously observed. We find that the broad component width varies azimuthally along the edge of DEM L71, ranging from 450+/-60 km/s along the eastern edge to values as high as 985 (+210)(-165) km/s along the faint western edge. In part of the faint northern rim the broad component is not detected, possibly indicating a lower density in these regions and/or a broad component width in excess of 1000 km/s. Between the limits of zero and full electron-ion temperature equilibration at the shock front, the allowed range of shock velocities is 430-560 km/s along the east rim and 700-1250 km/s along other parts of the blast wave. The H-alpha broad-to-narrow flux ratios vary considerably around the remnant, ranging from 0.4 to 0.8. These ratios lie below the values predicted by our shock models. We find that narrow component H-alpha emission from a cosmic ray precursor may be the cause of the discrepancy. The least decelerated portions of the blast wave (i.e., regions excluding the brightest filaments) are well characterized by Sedov models with a kinetic energy E_51= (0.37+/-0.06)*D_50**(5/2), where D_50 is the LMC distance in units of 50 kpc. The corresponding age for DEM L71 is (4360+/-290)*D_50 yr. This is the first time that velocity information from the entire blast wave has been utilized to study the global kinematics of a non-radiative SNR at a known distance.Comment: 21 pages, including 8 postscript figures and 4 tables, LaTeX, accepted to ApJ; see companion pape

    Quantum Gauge Equivalence in QED

    Full text link
    We discuss gauge transformations in QED coupled to a charged spinor field, and examine whether we can gauge-transform the entire formulation of the theory from one gauge to another, so that not only the gauge and spinor fields, but also the forms of the operator-valued Hamiltonians are transformed. The discussion includes the covariant gauge, in which the gauge condition and Gauss's law are not primary constraints on operator-valued quantities; it also includes the Coulomb gauge, and the spatial axial gauge, in which the constraints are imposed on operator-valued fields by applying the Dirac-Bergmann procedure. We show how to transform the covariant, Coulomb and spatial axial gauges to what we call ``common form,'' in which all particle excitation modes have identical properties. We also show that, once that common form has been reached, QED in different gauges has a common time-evolution operator that defines time-translation for states that represent systems of electrons and photons. By combining gauge transformations with changes of representation from standard to common form, the entire apparatus of a gauge theory can be transformed from one gauge to another.Comment: Contribution for a special issue of Foundations of Physics honoring Fritz Rohrlich; edited by Larry P. Horwitz, Tel-Aviv University, and Alwyn van der Merwe, University of Denver (Plenum Publishing, New York); 40 pages, REVTEX, Preprint UCONN-93-3, 1 figure available upon request from author
    • 

    corecore