34 research outputs found

    Transient Deformation Regime in Bending of Single-Walled Carbon Nanotubes

    Get PDF
    Pure bending of single-walled carbon nanotubes between (5,5) and (50,50) is studied using molecular dynamics based on the reactive bond order potential. Unlike smaller nanotubes, bending of (15,15) and larger ones exhibits an intermediate deformation in the transition between the buckled and fully kinked configurations. This transient bending regime is characterized by a gradual and controllable flattening of the nanotube cross section at the buckling site. Unbending of a kinked nanotube bypasses the transient bending regime, exhibiting a hysteresis due to van der Waals attraction between the tube walls at the kinked site

    Maskless etching of silicon using patterned microdischarges

    Get PDF
    Microdischarges in flexible copper-polyimide structures with hole diameters of 200 µm have been used as stencil masks to pattern bare silicon in CF4/Ar chemistry. The discharges were operated at 20 Torr using the substrate as the cathode, achieving etch rates greater than 7 µm/min. Optical emission spectroscopy provides evidence of excited fluorine atoms. The etch profiles show a peculiar shape attributed to plasma expansion into the etched void. Forming discharges in multiple hole and line shapes permits direct pattern transfer in silicon and could be an alternative to ultrasonic milling and laser drilling

    Analytical carbon-oxygen reactive potential

    Get PDF
    We present a reactive empirical potential with environment-dependent bond strengths for the carbon-oxygen (CO) system. The distinct feature of the potential is the use of three adjustable parameters characterizing the bond: the strength, length, and force constant, rather than a single bond order parameter, as often employed in these types of potentials. The values of the parameters are calculated by fitting results obtained from density functional theory. The potential is tested in a simulation of oxidative unzipping of graphene sheets and carbon nanotubes. Previous higher-level theoretical predictions of graphene unzipping by adsorbed oxygen atoms are confirmed. Moreover, nanotubes with externally placed oxygen atoms are found to unzip much faster than flat graphene sheets

    Charge-exchange mechanisms at the threshold for inelasticity in Ne+ collisions with surfaces

    Get PDF
    We present a study on scattering of 100–1400 eV Ne+ ions off Mg, Al, Si, and P surfaces. Exit energy distributions and yields of single-scattered Ne+ and Ne2+ were separately measured to investigate charge exchange mechanisms occurring at the onset of inelastic losses in binary hard collision events. At low incident energies, collisions appear elastic and projectile ion survival is dominated by nonlocal Auger-type neutralization involving the target valence band. However, once a critical Rmin (distance of closest approach) is reached, three phenomena occur simultaneously: Ne2+ generation, reversal of the Ne+ yield trend, and inelastic losses in Ne+ and Ne2+. Rmin values for the Ne2+ turn-on agree very well with the L-shell overlap distances of the colliding partners, suggesting that electron transfer involving the highly promoted 4fsigma molecular orbital (correlated to the Ne 2p) at close internuclear distance (~0.5 Å) is responsible. For the Ne+ yield, a clear transition from nonlocal neutralization to Rmin-dependent collision induced neutralization was observed. Binary collision inelasticities (Qbin) were evaluated for Ne+ and Ne2+ off Al and Si by taking into account electron straggling. Saturation-like behavior at RminNe** (2p43s2, 41–45 eV) and Ne+-->Ne+** (2p33s2/3s3p, 69–72 eV), followed by autoionization as the projectile leaves the surface region to give Ne+ and Ne2+. In contrast, Qbin values for Ne2+ at the +2 turn-on were seen much lower (35–40 eV off Al, 55–60 eV off Si) than that required for double promotion—eliminating the possibility that Ne2+ is only generated in double excitation of surviving Ne+. Thus single-electron excitation appears to be more important in the threshold region compared to the two-electron events seen at higher collision energies. In addition, the Ne+[Single Bond]P system shows striking similarities with the other target cases from the perspective of a well-defined Ne2+ turn-on, continually increasing Ne2+ yield with impact energy, and inelasticity values which point to the same 4fsigma excitation pathway. The decreasing Rmin requirement for higher target Z in terms of Ne2+ production has been confirmed for the Mg through P series, where hard collision excitation is governed by L-shell orbital overlaps

    Evidence of Simultaneous Double-Electron Promotion in F+ Collisions with Surfaces

    Get PDF
    A high-flux beam of mass-filtered F+ at low energy (100–1300 eV) was scattered off Al and Si surfaces to study core-level excitations of F0 and F+. Elastic scattering behavior for F+ was observed at energies 450 (700) eV off Al (Si) produces F2+—behavior which is remarkably similar to Ne+ off the same surfaces. Inelasticities measured for single collision events agree well with the energy deficits required to form (doubly excited) F** and F+** states from F0 and F+, respectively; these excited species most likely decay to inelastic F+ and F2+ via autoionization

    Reply to “On the origin of molecular oxygen in cometary comae”

    Get PDF
    [no abstract

    Contact angles, ordering, and solidification of liquid mercury in carbon nanotube cavities

    Get PDF
    Optimized model potentials for mercury-mercury and mercury-carbon interactions are used in molecular dynamics simulations to study wetting and solidification of liquid mercury encapsulated in single-walled carbon nanotubes. The contact angle of mercury in the nanotube cavity increases linearly with wall curvature. The solid-liquid transition becomes less well defined as nanotube diameter decreases, while the melting temperature drops exponentially. A concentric cylindrical-shell structure is predicted for solidified mercury in small (20,20) nanotubes, while a polycrystalline structure appears in larger (40,40) nanotubes
    corecore