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Reply to “On the origin of molecular oxygen in
cometary comae”
Y. Yao 1 & K.P. Giapis1

Laboratory experiments suggest that the molecular oxygen,
detected in the coma of comet 67P, is produced in part by
abstraction reactions of cometary water ions at exposed surfaces
on the nucleus and on the spacecraft. While production rates are
likely small relative to water, O2 formation on the spacecraft, near
the spectrometer used to detect O2, questions what its measured
abundance means, and renders conclusions of a primordial origin
premature.

Heritier, Altwegg, Berthelier (HAB) et al. discount the con-
tribution of our proposed Eley-Rideal (ER) reaction mechanism1

to the observed O2 abundance2 in the 67P/G–C coma by positing
that: (1) the flux of energetic water-group ions (H2O+, H3O+,
and OH+) hitting the nucleus is not sufficient to produce the
observed O2 signal, and (2) there are no instrumental effects in
response to energetic O2

− ions and energetic O2 neutrals entering
the DFMS.

The ion flux deficiency was conceded in our paper1. However,
HAB et al. offer a new argument that shifts the debate. They show
that, of the 2 water-group ion populations3 reaching Rosetta, the
(50–300 eV) “accelerated” water ions originating in the extended
coma exhibit a peak in flux perfectly out-of-phase with the H2O
and O2 densities measured at the spacecraft between March 6 and
23, 2016. This anticorrelation is projected to also hold for any O2

produced when the accelerated H2O+ ions subsequently reach the
nucleus. Assuming that ER reaction products are not trapped on
the nucleus surface, the anticorrelation makes a compelling case
against the accelerated water ions being the main driver for O2

production. The culprit flux must indeed be well-correlated with
the neutral gas signal at ROSINA-COPS.

In contrast, the "cold” water ions are correlated with O2.
Though not mentioned by HAB et al., the anticorrelation does
not hold for the more abundant “cold” water-group ions3, pro-
duced in the space between the 67P nucleus and Rosetta, and
arriving at the spacecraft with energies between 10 and 50 eV.
Depending on heliocentric distance, these newly formed water
ions experience the solar wind convective electric field3,4, or the
ambipolar electric field5 of the inner cometary plasma and gain
energy as they move away from the nucleus. Upon reaching
Rosetta, the negative spacecraft potential accelerates them further
to impinge on exposed spacecraft surfaces at energies that can be
measured by the RPC-ICA3 and ion and electron sensor (IES)4,6

instruments. Unlike the sporadic arrival of accelerated ions, “the
cold population is almost always present” at Rosetta3 during the
entire mission, tracking well the averaged neutral gas density
preperihelion and postperihelion7. With respect to flux oscilla-
tions, Goldstein et al.6 present timed cold-ion arrival data for
September 10, 2014, demonstrating in Fig. 1 that the flux of these
ions peaks contemporaneous with the neutral gas density mea-
sured by COPS. More intense IES signal is seen for 10–50 eV ions
between October 17 and 21, 2014, when the ion and neutral gas
peaks are perfectly synchronized, see Fig. 5 in Galand et al.8.
Langmuir probe derived ion densities also exhibit peaks perfectly
coincidental with the neutral gas density between 14 and 22
October 2014, see Fig. 1 in Edberg et al.9. Remarkably, the
October 17–23, 2014 period coincides with the strongest linearity
(R= 0.97) seen between O2 and H2O DFMS signals2. The cor-
relation holds even closer to perihelion, see Fig. 2 in Volwerk
et al.10 for June 7, 2015. Thus, it appears the cold water-group
ions are well-correlated with the H2O and O2 neutral gas densities
throughout the mission.

Rosetta emits its own O2. “Cold” water ions possess enough
kinetic energy to also drive ER reactions on exposed spacecraft
surfaces—the threshold for neutral O2 formation in H2O+ colli-
sions with oxygen atoms on metal surfaces is estimated to be in
the 5–8 eV range. These surfaces, include aluminium frame
components, photovoltaic (PV) panels, and multi-layer insulation
(MLI) protection. The PV panel windows are coated with
transparent conductive indium–tin oxide (ITO), while the MLI
has a top layer consisting also of conductive ITO (for uniform
spacecraft potential) (M.G.G.T. Taylor & A.I. Eriksson, personal
communication). Thus, a substantial surface area of ITO is
exposed to and bombarded by water-group ions with energies
between 10 and 50 eV. Figure 1 presents new results from scat-
tering of energetic H2O+ and H3O+ on ITO surfaces under
identical conditions to our original studies on cometary material
analogues1. As in that case, we find that O2

− is produced readily
on ITO, in fact with a lower H2O+ incidence energy threshold
than that observed for scattering on SiOx or FeOy (Al-oxide
behaves similarly). O2

+ and neutral O2 are also co-produced (not
shown) with varying kinetic energies and states of excitation. This
experiment suggests that the “cold” water ions bombarding
Rosetta produce O2 in situ, thus populating the gas cloud around

DOI: 10.1038/s41467-018-04943-w OPEN

1 Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA. Correspondence and
requests for materials should be addressed to K.P.G. (email: giapis@cheme.caltech.edu)

NATURE COMMUNICATIONS |  (2018) 9:2581 | DOI: 10.1038/s41467-018-04943-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Caltech Authors - Main

https://core.ac.uk/display/216288627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-0814-6675
http://orcid.org/0000-0002-0814-6675
http://orcid.org/0000-0002-0814-6675
http://orcid.org/0000-0002-0814-6675
http://orcid.org/0000-0002-0814-6675
mailto:giapis@cheme.caltech.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


the spacecraft with O2. Can any of this O2 be detected by the
DFMS? This phenomenon is arguably equivalent to outgassing of
the spacecraft, which has been shown11–13 to lead to detectable
signal after many years of space travel, even when the DFMS is
not in direct line-of-sight of the outgassing sources (e.g., during
spacecraft maneuvers or other payload operations). Indeed, Beth
et al.13 rationalized a false-positive detection of NH4

+ by the
DFMS on the grounds that “the gas cloud around the spacecraft
may be contaminated by Rosetta itself.” Based on other back-
ground gas detection experiments, Schläppi et al.11 were the first
to wonder whether “the spacecraft is surrounded by a sig-
nificantly denser atmosphere that enhances the collision fre-
quency and thus increases the return flux.” Given that the DFMS
can detect spacecraft outgassing emissions far away from the
comet, we see no reason why some of the O2 produced locally,
while in orbit around the comet, will not make it into the DFMS.

Do ion-Rosetta collisions produce enough O2? The argument
circles back to ion flux, albeit in H2O+ collisions with Rosetta
surfaces. “Cold” water-group ion flux has been measured to be 2
orders of magnitude larger than that of “accelerated” water ions3

with the caveat that it may be underestimated “due to the limited
field of view of the instrument”7. Though more significant, this
flux is still too low (roughly by 100×) to justify the measured O2

abundance. However, O2 is now produced proximal to the DFMS,
expanding the possibility of an instrumental effect. Can locally
produced O2 entering the DFMS be ionized more efficiently than
cometary O2? An important difference with O2 formed on
Rosetta vs. the nucleus is the state of excitation of the molecule.
ER reactions produce rovibrationally hot molecules, often also
electronically excited (e.g., Rydberg states)1. Such excited O2

molecules (e.g., long-lived low lying singlet states) are more likely
to survive the transit time into the DFMS ionizer when produced
in its vicinity. Vibrationally and electronically excited O2 states
have lower energy threshold and larger cross-section for electron
impact ionization than the ground state14. Bottom line, excited
O2 molecules entering an ionizer will produce more detectable
O2

+ ions than ground-state O2 neutrals.
Why does O2 appear to follow the r-2 Haser law? O2 yield in ER

reactions depends on both flux and energy of the incident H2O+,
where the ion energy is determined effectively by the spacecraft
potential. While the “cold” water ion flux follows a 1/r scaling law

(r= cometocentric distance)3, the O2 flux will exhibit a different r
scaling because of the convoluted energy dependence. The
spacecraft potential is determined by the balance between ions
and electrons arriving at its surfaces, whose fluxes depend on
cometocentric distance and latitude15. As a result, the spacecraft
potential exhibits generally a decaying dependence on r, which
transfers to the ion energy gained when traversing the sheath. The
convoluted ion flux and energy dependencies on cometocentric
distance produce a 1/rn scaling, where n > 1. Thus, O2 signal may
exhibit a scaling closer to the Haser law for entirely different
reasons than those assumed by HAB et al.

Has the DFMS been calibrated for O2? None of the published
papers16–18 and Ph.D. theses19,20 on DFMS operation and char-
acterization contains any calibration data for O2, neither to
energetic ions (O2

−, O2
+), nor to energetic O2 neutrals, nor to

excited states of O2. Only background trace amounts of thermal
O2 have been detected19. In his Ph.D. thesis, Schläppi19 presents
calibration data to energetic Ne+ ions, but includes no such
experiments with O2

+ ions. An instrumental effect cannot be
ruled out without knowledge of the DFMS response to energetic
or excited O2.

In conclusion, laboratory scattering experiments of H2O+ on
ITO surfaces suggest that ER reactions may produce O2 on
Rosetta surfaces from “cold” water-group ions. Given the pre-
valence of the cold ion population, this phenomenon resembles
intensified spacecraft outgassing. Therefore, some of the in situ
produced O2 must contribute to the overall O2 signal detected.
The magnitude of the contribution depends not only on the
number density but also on the state of excitation of the O2

molecules entering the DFMS. Without instrument calibration,
the actual level of cometary O2 cannot be established.

Received: 10 October 2017 Accepted: 5 June 2018

References
1. Yao, Y. & Giapis, K. P. Dynamic molecular oxygen production in cometary

comae. Nat. Comm. 8, 15298 (2017).
2. Bieler, A. et al. Abundant molecular oxygen in the coma of comet 67P/

Churyumov–Gerasimenko. Nature 526, 678–681 (2015).
3. Nilsson, H. et al. Evolution of the ion environment of comet 67P/

Churyumov–Gerasimenko. Astron. Astrophys. 583, A20 (2015).
4. Fuselier, S. A. et al. Rosina/DFMS and IES observations of 67P: ion-neutral

chemistry in the coma of a weakly outgassing comet. Astron. Astrophys. 583,
A2 (2015).

5. Madanian, H. et al. Suprathermal electrons near the nucleus of comet 67P/
Churyumov–Gerasimenko at 3 AU: model comparisons with Rosetta data. J.
Geophys. Res. Space Phys. 121, 5815 (2016).

6. Goldstein, R. et al. The Rosetta ion and electron sensor (IES) measurement of
the development of pickup ions from comet 67P/Churyumov–Gerasimenko.
Geophys. Res. Lett. 42, 3093 (2015).

7. Nilsson, H. et al. Evolution of the ion environment of comet 67P during the
Rosetta mission as seen by RPC-ICA. MNRAS 469, S252 (2017).

8. Galand, M. et al. Ionospheric plasma of comet 67P probed by Rosetta at 3 au
from the sun. MNRAS 462, S331 (2016).

9. Edberg, N. J. T. et al. Spacial distribution of low-energy plasma around comet
67P/CG from Rosetta measurements. Geophys. Res. Lett. 42, 4263 (2015).

10. Volwerk, M. et al. Mass-loading, pile-up, and mirror-mode waves at comet
67P/ Churyumov–Gerasimenko. Ann. Geophys. 34, 1 (2016).

11. Schläppi, B. et al. Characterization of the gaseous spacecraft environment of
Rosetta by ROSINA. In Proc. of the 3rd AIAA Atmospheric Space
Environments Conference (AIAA, 2011).

12. Schläppi, B. et al. Influence of spacecraft outgassing on the exploration of
tenuous atmospheres with in situ mass spectrometry. J. Geophys. Res. 115,
A12313 (2010).

13. Beth, A. et al. First in situ detection of the ammonium cometary ion NH4
+

(protonated ammonia NH3) in the coma of 67P/C-G near perihelion. MNRAS
462, S562 (2016).

H2O+/ITO H3O+/ITOO2
– O2

–

E0 [eV] E0 [eV]

201 201
171 171

141 141
111

11191

9171
71
61
51

41
31

51

41
31

0 30 60 90

O2
– exit energy (eV)

O
2–  

ex
it 

in
te

ns
ity

 (
a.

u.
)

O
2–  

ex
it 

in
te

ns
ity

 (
a.

u.
)

120 150 0 30 60 90

O2
– exit energy (eV)

120 150 180

5000 2000

a b

Fig. 1 Production of O2
− from energetic H2O+ and H3O+ bombardment of

ITO surfaces. Energy distributions of O2
− scattered from a thick layer of

conductive indium–tin oxide following bombardment by a H2O+ and b H3O
+ ion beams at various incidence energies (E0). Scattering geometry: 45°
angle of incidence and 45° angle of exit. The ITO layer was deposited on a
Cu sample by magnetron sputtering of a commercial high-purity ITO target
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