1,567 research outputs found

    On the Interpretation of the Redshift in a Static Gravitational Field

    Get PDF
    The classical phenomenon of the redshift of light in a static gravitational potential, usually called the gravitational redshift, is described in the literature essentially in two ways: on the one hand the phenomenon is explained through the behaviour of clocks which run the faster the higher they are located in the potential, whereas the energy and frequency of the propagating photon do not change with height. The light thus appears to be redshifted relative to the frequency of the clock. On the other hand the phenomenon is alternatively discussed (even in some authoritative texts) in terms of an energy loss of a photon as it overcomes the gravitational attraction of the massive body. This second approach operates with notions such as the "gravitational mass" or the "potential energy" of a photon and we assert that it is misleading. We do not claim to present any original ideas or to give a comprehensive review of the subject, our goal being essentially a pedagogical one.Comment: latex, 16 pages, to be published in American Journal of Physic

    An Empirical Evaluation of The Relationship of Market Value Added with Internal Company Characteristics

    Get PDF
    The window dressing of jinanc/al statements creates problems for investment decision making. This necessitates the use of other measures that capture the fundamental economic reality of the organization. This paper seeks to examine the relationship between market value added and the internal performance characteristics and how this affects share prices. The paper using OLS regression technique shows that Market Value Added is highly correlated with Economic Value Added than other internal company characteristics. The import of this is that, for management to increase market value added it must concentrate on increasing its Economic Value Adde

    Neutrino Spin Flavor Precession and Leptogenesis

    Full text link
    We argue that \Delta L=2 neutrino spin flavor precession, induced by the primordial magnetic fields, could have a significant impact on the leptogenesis process that accounts for the baryon asymmetry of the universe. Although the extra galactic magnetic fields is extremely weak at present time (about 10^{-9} Gauss), the primordial magnetic filed at the electroweak scale could be quite strong (of order 10^{17} Gauss). Therefore, at this scale, the effects of the spin flavor precession are not negligible. We show that the lepton asymmetry may be reduced by 50% due to the spin flavor precession. In addition, the leptogenesis will have different feature from the standard scenario of leptogenesis, where the lepton asymmetry continues to oscillate even after the electroweak phase transition.Comment: 5 pages, one figure. References adde

    The strong Atiyah conjecture for right-angled Artin and Coxeter groups

    Full text link
    We prove the strong Atiyah conjecture for right-angled Artin groups and right-angled Coxeter groups. More generally, we prove it for groups which are certain finite extensions or elementary amenable extensions of such groups.Comment: Minor change

    Interplay of gravitation and linear superposition of different mass eigenstates

    Get PDF
    The interplay of gravitation and the quantum-mechanical principle of linear superposition induces a new set of neutrino oscillation phases. These ensure that the flavor-oscillation clocks, inherent in the phenomenon of neutrino oscillations, redshift precisely as required by Einstein's theory of gravitation. The physical observability of these phases in the context of the solar neutrino anomaly, type-II supernovae, and certain atomic systems is briefly discussed

    New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons

    Full text link
    We report on the first results of a sensitive search for scalar coupling of photons to a light neutral boson in the mass range of approximately 1.0 milli-electron volts and coupling strength greater than 106^-6 GeV1^-1 using optical photons. This was a photon regeneration experiment using the "light shining through a wall" technique in which laser light was passed through a strong magnetic field upstream of an optical beam dump; regenerated laser light was then searched for downstream of a second magnetic field region optically shielded from the former. Our results show no evidence for scalar coupling in this region of parameter space.Comment: pdf-file, 10 pages, 4 figures, submitted to Physical Review Letter

    Neutrino statistics and big bang nucleosynthesis

    Full text link
    Neutrinos may possibly violate the spin-statistics theorem, and hence obey Bose statistics or mixed statistics despite having spin half. We find the generalized equilibrium distribution function of neutrinos which depends on a single fermi-bose parameter, \kappa, and interpolates continuously between the bosonic and fermionic distributions when \kappa changes from -1 to +1. We consider modification of the Big Bang Nucleosynthesis (BBN) in the presence of bosonic or partly bosonic neutrinos. For pure bosonic neutrinos the abundances change (in comparison with the usual Fermi-Dirac case) by -3.2% for 4He (which is equivalent to a decrease of the effective number of neutrinos by \Delta N_\nu = - 0.6), +2.6% for 2H and -7% for 7Li. These changes provide a better fit to the BBN data. Future BBN studies will be able to constrain the fermi-bose parameter to \kappa > 0.5, if no deviation from fermionic nature of neutrinos is found. We also evaluate the sensitivity of future CMB and LSS observations to the fermi-bose parameter.Comment: 11 pages, 3 figures, matches version in JCAP, discussion and references extended slightl

    A constraint on antigravity of antimatter from precision spectroscopy of simple atoms

    Get PDF
    Consideration of antigravity for antiparticles is an attractive target for various experimental projects. There are a number of theoretical arguments against it but it is not quite clear what kind of experimental data and theoretical suggestions are involved. In this paper we present straightforward arguments against a possibility of antigravity based on a few simple theoretical suggestions and some experimental data. The data are: astrophysical data on rotation of the Solar System in respect to the center of our galaxy and precision spectroscopy data on hydrogen and positronium. The theoretical suggestions for the case of absence of the gravitational field are: equality of electron and positron mass and equality of proton and positron charge. We also assume that QED is correct at the level of accuracy where it is clearly confirmed experimentally

    Mimicking diffuse supernova antineutrinos with the Sun as a source

    Full text link
    Measuring the electron antineutrino component of the cosmic diffuse supernova neutrino background (DSNB) is the next ambitious goal for low-energy neutrino astronomy. The largest flux is expected in the lowest accessible energy bin. However, for E < 15 MeV a possible signal can be mimicked by a solar electron antineutrino flux that originates from the usual 8B neutrinos by spin-flavor oscillations. We show that such an interpretation is possible within the allowed range of neutrino electromagnetic transition moments and solar turbulent field strengths and distributions. Therefore, an unambiguous detection of the DSNB requires a significant number of events at E > 15 MeV.Comment: 4 pages, 1 figur
    corecore