1,868 research outputs found

    A comparison of two magnetic ultra-cold neutron trapping concepts using a Halbach-octupole array

    Full text link
    This paper describes a new magnetic trap for ultra-cold neutrons (UCNs) made from a 1.2 m long Halbach-octupole array of permanent magnets with an inner bore radius of 47 mm combined with an assembly of superconducting end coils and bias field solenoid. The use of the trap in a vertical, magneto-gravitational and a horizontal setup are compared in terms of the effective volume and ability to control key systematic effects that need to be addressed in high precision neutron lifetime measurements

    Experimental study of ultracold neutron production in pressurized superfluid helium

    Get PDF
    We have investigated experimentally the pressure dependence of the production of ultracold neutrons (UCN) in superfluid helium in the range from saturated vapor pressure to 20bar. A neutron velocity selector allowed the separation of underlying single-phonon and multiphonon pro- cesses by varying the incident cold neutron (CN) wavelength in the range from 3.5 to 10{\AA}. The predicted pressure dependence of UCN production derived from inelastic neutron scattering data was confirmed for the single-phonon excitation. For multiphonon based UCN production we found no significant dependence on pressure whereas calculations from inelastic neutron scattering data predict an increase of 43(6)% at 20bar relative to saturated vapor pressure. From our data we conclude that applying pressure to superfluid helium does not increase the overall UCN production rate at a typical CN guide.Comment: 18 pages, 8 figures Version accepted for publication in PR

    Precise Measurement of Magnetic Field Gradients from Free Spin Precession Signals of 3^{3}He and 129^{129}Xe Magnetometers

    Full text link
    We report on precise measurements of magnetic field gradients extracted from transverse relaxation rates of precessing spin samples. The experimental approach is based on the free precession of gaseous, nuclear spin polarized 3^3He and 129^{129}Xe atoms in a spherical cell inside a magnetic guiding field of about 400 nT using LTC_C SQUIDs as low-noise magnetic flux detectors. The transverse relaxation rates of both spin species are simultaneously monitored as magnetic field gradients are varied. For transverse relaxation times reaching 100 h, the residual longitudinal field gradient across the spin sample could be deduced to beBz=(5.6±0.4)|\vec{\nabla}B_z|=(5.6 \pm 0.4) pT/cm. The method takes advantage of the high signal-to-noise ratio with which the decaying spin precession signal can be monitored that finally leads to the exceptional accuracy to determine magnetic field gradients at the sub pT/cm scale

    Is the Unitarity of the quark-mixing-CKM-matrix violated in neutron β\beta-decay?

    Full text link
    We report on a new measurement of neutron β\beta-decay asymmetry. From the result \linebreak A0A_0 = -0.1189(7), we derive the ratio of the axial vector to the vector coupling constant λ\lambda = gA/gV{\it g_A/g_V} = -1.2739(19). When included in the world average for the neutron lifetime τ\tau = 885.7(7)s, this gives the first element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix VudV_{ud} . With this value and the Particle Data Group values for VusV_{us} and VubV_{ub}, we find a deviation from the unitarity condition for the first row of the CKM matrix of Δ\Delta = 0.0083(28), which is 3.0 times the stated error

    Role of dynamic Jahn-Teller distortions in Na2C60 and Na2CsC60 studied by NMR

    Full text link
    Through 13C NMR spin lattice relaxation (T1) measurements in cubic Na2C60, we detect a gap in its electronic excitations, similar to that observed in tetragonal A4C60. This establishes that Jahn-Teller distortions (JTD) and strong electronic correlations must be considered to understand the behaviour of even electron systems, regardless of the structure. Furthermore, in metallic Na2CsC60, a similar contribution to T1 is also detected for 13C and 133Cs NMR, implying the occurence of excitations typical of JT distorted C60^{2-} (or equivalently C60^{4-}). This supports the idea that dynamic JTD can induce attractive electronic interactions in odd electron systems.Comment: 3 figure

    Comparison of ultracold neutron sources for fundamental physics measurements

    Full text link
    Ultracold neutrons (UCNs) are key for precision studies of fundamental parameters of the neutron and in searches for new CP violating processes or exotic interactions beyond the Standard Model of particle physics. The most prominent example is the search for a permanent electric dipole moment of the neutron (nEDM). We have performed an experimental comparison of the leading UCN sources currently operating. We have used a 'standard' UCN storage bottle with a volume of 32 liters, comparable in size to nEDM experiments, which allows us to compare the UCN density available at a given beam port.Comment: 20 pages, 30 Figure
    corecore