20 research outputs found

    Π€ΠžΠ ΠœΠ˜Π ΠžΠ’ΠΠΠ˜Π• И ΠžΠŸΠ’Π˜Π§Π•Π‘ΠšΠ˜Π• Π‘Π’ΠžΠ™Π‘Π’Π’Π ΠžΠ‘ΠΠ–Π”Π•ΠΠΠžΠ“Πž Π­Π›Π•ΠšΠ’Π ΠžΠ₯Π˜ΠœΠ˜Π§Π•Π‘ΠšΠ˜Πœ ΠœΠ•Π’ΠžΠ”ΠžΠœ Π›Π•Π“Π˜Π ΠžΠ’ΠΠΠΠžΠ“Πž ΠΠ˜ΠšΠ•Π›Π•Πœ ΠžΠšΠ‘Π˜Π”Π ЦИНКА

    Get PDF
    This paper is targeted at studying the patterns of deposition by electrochemical method of Ni-doped ZnO films, including registering and analyzing their photoluminescence and Raman scattering spectra. We have studied the electrochemical deposition of nickel-doped zinc oxide films on single-crystal silicon substrates from aqueous solutions of zinc and nickel nitrates. The deposition was conducted from aqua solutions of Zn and Ni nitrates in a standard double-electrode electrochemical cell in galvanostatic mode with the current density from 5 to 20 mA/cm2 and deposition time from 5 to 30 min. The Raman scattering on nickel-doped zinc oxide films was examined via laser Raman spectrometer SOL Instruments Confotec NR500. The analysis of Raman spectra showed that an increase of cathodic current density deposition leads to an enhanced concentration of a doping agent in the films. Photoluminescence spectra of the samples were registered on a laser spectral measuring system based on monochromator-spectrograph SOLAR TII MS 7504i where a monochromatic line with the 345-nm wavelength, which was extracted from the spectrum of Xe-lamp by means of double monochromator Solar TII DM160, was used as the excitation source. The research demonstrates that the emmission intensity increases with the thickness of the deposited film, and the position of maximums of the radiation line remains unchanged in a visible wavelength range and on photoluminescence spectra with fixed current density. The change in the density of the cathode current leads to a shift in the position of the photoluminescence spectra maximum, which indicates restructuring of defects and dopant atoms in the doped semiconductor, which in turn changes the position of the corresponding levels in the band gap of the material.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π»Π°ΡΡŒ Π² исслСдовании закономСрностСй формирования элСктрохимичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠ»Π΅Π½ΠΎΠΊ оксида Ρ†ΠΈΠ½ΠΊΠ°, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½ΠΈΠΊΠ΅Π»Π΅ΠΌ, Π° Ρ‚Π°ΠΊΠΆΠ΅ рСгистрации ΠΈ исслСдовании спСктров Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½ΠΈΡΡ†Π΅Π½Ρ†ΠΈΠΈ ΠΈ рамановского рассСяния. ОсаТдСниС ΠΏΠ»Π΅Π½ΠΎΠΊ оксида Ρ†ΠΈΠ½ΠΊΠ°, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½ΠΈΠΊΠ΅Π»Π΅ΠΌ, ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктрохимичСского осаТдСния Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠΈ крСмния ΠΌΠ°Ρ€ΠΊΠΈ ЭКЭБ-0,01 (111). ОсаТдСниС ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ ΠΈΠ· Π²ΠΎΠ΄Π½Ρ‹Ρ… растворов Π½ΠΈΡ‚Ρ€Π°Ρ‚ΠΎΠ² Ρ†ΠΈΠ½ΠΊΠ° ΠΈ никСля Π² Π³Π°Π»ΡŒΠ²Π°Π½ΠΎΡΡ‚Π°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ плотностСй Ρ‚ΠΎΠΊΠ° ΠΎΡ‚ 5 Π΄ΠΎ 20 мА/см2 ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ осаТдСния ΠΎΡ‚ 5 Π΄ΠΎ 30 ΠΌΠΈΠ½. На Π»Π°Π·Π΅Ρ€Π½ΠΎΠΌ Рамановском спСктромСтрС SOL Instruments Confotec NR500 ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ исслСдованиС рамановского рассСяния Π½Π° ΠΏΠ»Π΅Π½ΠΊΠ°Ρ… Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π½ΠΈΠΊΠ΅Π»Π΅ΠΌ оксида Ρ†ΠΈΠ½ΠΊΠ°. Анализ рамановских спСктров ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠ°Ρ‚ΠΎΠ΄Π½ΠΎΠΉ плотности Ρ‚ΠΎΠΊΠ° осаТдСния ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°Π½ΠΈΡŽ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ примСси Π² ΠΏΠ»Π΅Π½ΠΊΠ°Ρ…. РСгистрация спСктров Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ Π½Π° Π»Π°Π·Π΅Ρ€Π½ΠΎΠΌ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΌ ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ комплСксС Π½Π° основС ΠΌΠΎΠ½ΠΎΡ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΡ€Π°-спСктрографа SOLAR TII MS 7504i, Π³Π΄Π΅ Π² качСствС источника Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π°ΡŽΡ‰Π΅Π³ΠΎ излучСния использовалась монохроматичСская линия с Π΄Π»ΠΈΠ½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ‹ 345 Π½ΠΌ, выдСлСнная ΠΈΠ· спСктра ксСноновой Π»Π°ΠΌΠΏΡ‹ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΡ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΡ€Π° Solar TII DM160. ИсслСдованиС ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ излучСния растСт с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ осаТдСнной ΠΏΠ»Π΅Π½ΠΊΠΈ, Π° ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ максимумов полосы излучСния, Π² Π²ΠΈΠ΄ΠΈΠΌΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½, Π½Π° спСктрах Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ, остаСтся Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΈ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ плотности Ρ‚ΠΎΠΊΠ°, нСзависимо ΠΎΡ‚ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ процСсса осаТдСния. ИзмСнСниС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ плотности ΠΊΠ°Ρ‚ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ‚ΠΎΠΊΠ° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ сдвигу полоТСния максимума спСктра Ρ„ΠΎΡ‚ΠΎΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ, Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° пСрСстройку структуры Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ² ΠΈ примСсСй Π² Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ΅, ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‰ΡƒΡŽ ΠΊ измСнСнию полоТСния ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ Π² Π·Π°ΠΏΡ€Π΅Ρ‰Π΅Π½Π½ΠΎΠΉ Π·ΠΎΠ½Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°

    Π‘Π’Π Π£ΠšΠ’Π£Π ΠΠ«Π• И ΠœΠΠ“ΠΠ˜Π’ΠΠ«Π• Π‘Π’ΠžΠ™Π‘Π’Π’Π Π’Π’Π•Π Π”Π«Π₯ Π ΠΠ‘Π’Π’ΠžΠ ΠžΠ’ Π‘Π˜Π‘Π’Π•ΠœΠ« ΠΠΠ’Π˜ΠœΠžΠΠ˜Π” ΠšΠžΠ‘ΠΠ›Π¬Π’Πβ€“Π’Π•Π›Π›Π£Π Π˜Π” ΠšΠžΠ‘ΠΠ›Π¬Π’Π

    Get PDF
    By the method of melting special powder amounts of cobalt antimonide and cobalt telluride in vacuum, the solid solutions alloys of the CoSb1–x Tex system were synthesized with the NiAs structure. X-ray analysis results of the alloys confirmed the formation of a continuous series of solid solutions with a nickel-arsenide-type structure in the system. The constants a of the initial CoSb and CoTe compounds are close in values, which determines the course of the dependence a = f(x) that is practically parallel to the concentration axis. The dependence of the constant c on the concentration increases smoothly from 5.181 Γ… in CoSb to 5.371 Γ… in CoTe with a slight deflection to the concentration axis. The alloy density, determined by the hydrostatic weighing in carbon tetrachloride, has a linear dependence on the concentration. The concentration dependence of the micro hardness of the CoSb1–x Tex alloys passes through a weakly expressed maximum in the range of average compositions. Specific magnetization and magnetic susceptibility of the alloys are measured by the ponderomotive method in a magnetic field of 6.8 Β· 105 A/m in the temperature range 80–1200 K. At the temperature of liquid nitrogen, the value of specific magnetization is maximum (~6,0–6,5 Гс Β· см3 Β· г–1) in CoTe and solid solutions based on it. Solid solutions of compositions x = 0.4–0.9 have a magnetic transition temperature exceeding 1200 K.Β ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ плавлСния ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… количСств ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² соСдинСний Π°Π½Ρ‚ΠΈΠΌΠΎΠ½ΠΈΠ΄Π° ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° ΠΈ Ρ‚Π΅Π»Π»ΡƒΡ€ΠΈΠ΄Π° ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° Π² Π²Π°ΠΊΡƒΡƒΠΌΠ΅ синтСзированы сплавы Ρ‚Π²Π΅Ρ€Π΄Ρ‹Ρ… растворов систСмы CoSb1–x Tex . Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ рСнтгСноструктурного Π°Π½Π°Π»ΠΈΠ·Π° сплавов ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ»ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² систСмС Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠ³ΠΎ ряда Ρ‚Π²Π΅Ρ€Π΄Ρ‹Ρ… растворов со структурой никСль- арсСнидного Ρ‚ΠΈΠΏΠ°. ΠŸΠΎΡΡ‚ΠΎΡΠ½Π½Ρ‹Π΅ Π° исходных соСдинСний CoSb ΠΈ CoTe Π±Π»ΠΈΠ·ΠΊΠΈ ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌ, Ρ‡Ρ‚ΠΎ опрСдСляСт практичСски ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΉ оси ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ…ΠΎΠ΄ зависимости a = f(x). Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ постоянной с ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΏΠ»Π°Π²Π½ΠΎ возрастаСт ΠΎΡ‚ 5,181 Γ… Ρƒ CoSb Π΄ΠΎ 5,371 Γ… Ρƒ CoTe с нСбольшим ΠΏΡ€ΠΎΠ³ΠΈΠ±ΠΎΠΌ ΠΊ оси ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ. ΠŸΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ сплавов, опрСдСлСнная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ гидростатичСского взвСшивания Π² Ρ‚Π΅Ρ‚Ρ€Π°Ρ…Π»ΠΎΡ€ΠΈΠ΄Π΅ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π°, ΠΈΠΌΠ΅Π΅Ρ‚ Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ зависимости ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ. ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ микротвСрдости сплавов систСмы CoSb1–x Tex ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· слабо Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΉ максимум Π² области срСдних составов. ΠŸΠΎΠ½Π΄Π΅Ρ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π² ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΌ ΠΏΠΎΠ»Π΅ 6,8 Β· 105 А/ΠΌ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ 80–1200 К ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Ρ‹ ΡƒΠ΄Π΅Π»ΡŒΠ½Π°Ρ Π½Π°ΠΌΠ°Π³Π½ΠΈΡ‡Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΈ магнитная Π²ΠΎΡΠΏΡ€ΠΈΠΈΠΌΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ сплавов систСмы. ΠŸΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ Π°Π·ΠΎΡ‚Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ намагничСнности максимальна (~6,0–6,5 Гс Β· см3 Β· г–1) Ρƒ составов CoTe ΠΈ CoSb0,1Te0,9 ΠΈ практичСски Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ Ρƒ CoSb ΠΈ Ρ‚Π²Π΅Ρ€Π΄Ρ‹Ρ… растворов Π½Π° Π΅Π³ΠΎ основС. Π’Π²Π΅Ρ€Π΄Ρ‹Π΅ растворы составов Ρ… = 0,4–0,9 ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΎΠΉ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π°, ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°ΡŽΡ‰Π΅ΠΉ 1200 К

    Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ элСктрохимичСскиС свойства ΠΏΠ»Π΅Π½ΠΎΠΊ оксидов никСля ΠΈ ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π°

    Get PDF
    Films of cobalt oxide and nickel oxide on monocrystalline silicon substrates were obtained by electrochemical deposition from aqueous electrolyte solutions. Their structure and composition were studied by Raman microscopy and scanning electron microscopy. The results of the study by Raman spectroscopy showed that the obtained films are polycrystalline structures of cobalt (II, III) oxide and nickel (II) oxide, the crystalline perfection of which increases with an increase in the electrolyte temperature. It was found by scanning electron microscopy that nickel oxide films have a smoother surface, while cobalt oxide has a more developed structure consisting of lamellar crystals. The specific electrochemical capacity of cobalt oxide and nickel oxide films obtained under optimal conditions, measured by voltammetry, was 14.67 and 1634.08 F/g, respectively. The high specific electrochemical capacity of a nickel oxide film can be used to create efficient electrochemical devices and energy storage devices.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктрохимичСского осаТдСния ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΠ»Π΅Π½ΠΊΠΈ оксида ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° ΠΈ оксида никСля Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ… монокристалличСского крСмния. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ исслСдования ΠΈΡ… структуры ΠΈ состава ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ рамановской микроскопии ΠΈ ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ элСктронной микроскопии. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ рамановской спСктроскопии ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΠ»Π΅Π½ΠΊΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой поликристалличСскиС структуры оксида ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° (II, III) ΠΈ оксида никСля (II), кристалличСскоС ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… возрастаСт с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ элСктролита. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ элСктронной микроскопии Π±Ρ‹Π»ΠΎ установлСно, Ρ‡Ρ‚ΠΎ ΠΏΠ»Π΅Π½ΠΊΠΈ оксида никСля ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ Π³Π»Π°Π΄ΠΊΠΎΠΉ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ, Π² Ρ‚ΠΎ врСмя ΠΊΠ°ΠΊ оксид ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΎΠΉ структурой ΠΈ состоит ΠΈΠ· кристаллов пластинчатой Ρ„ΠΎΡ€ΠΌΡ‹. Π˜Π·ΠΌΠ΅Ρ€Π΅Π½Π½Π°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²ΠΎΠ»ΡŒΡ‚Π°ΠΌΠΏΠ΅Ρ€ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½Π°Ρ элСктрохимичСская Π΅ΠΌΠΊΠΎΡΡ‚ΡŒ ΠΏΠ»Π΅Π½ΠΎΠΊ оксида ΠΊΠΎΠ±Π°Π»ΡŒΡ‚Π° ΠΈ оксида никСля, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π² ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условиях, составила соотвСтствСнно 14,67 ΠΈ 1634,08 Π€/Π³. Высокая ΡƒΠ΄Π΅Π»ΡŒΠ½Π°Ρ элСктрохимичСская Π΅ΠΌΠΊΠΎΡΡ‚ΡŒ ΠΏΠ»Π΅Π½ΠΊΠΈ оксида никСля ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована для создания эффСктивных элСктрохимичСских ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² ΠΈ устройств накоплСния энСргии

    Условия синтСза, кристалличСская структура ΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Π΅ свойства сСлСнидов Mn–Tm–Se

    Get PDF
    Single-phase compositions in the MnSe–TmSe quasi-binary section have been synthesized by the method of reactions in the solid phase. The crystal structure of polycrystalline powders has been studied in CuKΞ±-radiation. It was found that the samples in the concentration range 0 x 0.7 have a cubic structure of the space group Fm m3 . An increase in the concentration of Tm cations in the Mn1–xTmxSe compositions leads to an increase in the unit cell parameter a from 0.547 nm for the Mn0.975Tm0.025Se compound to 0.566 nm for the Mn0.3Tm0.7Se composition. Thin layers of Mn1–xTmxSe solid solutions were synthesized by the flash method on optically transparent glass substrates. The film thicknesses are in the range of values from 0.8 to 3.2 Β΅m. It has been established that Mn1–xTmxSe films also have the system NaCl, S.G.: Fm m3 . The composition of the Mn1–xTmxSe films corresponds to the chemical composition of the MnSe–TmSe charge powders. In the temperature range ~ 80–900 K, the va lues of the specific magnetization and magnetic susceptibility of the studied selenides were measured. The results obtained make it possible to determine the temperature regimes for the synthesis of new magnetic semiconductor substances, including those in the film state. The synthesized substances can be used in multifunctional microelectronic devices, as well as in the development of new materials capable of operating in wide temperature ranges and under the influence of external magnetic fields.ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ Π² Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΉ Ρ„Π°Π·Π΅ синтСзированы ΠΎΠ΄Π½ΠΎΡ„Π°Π·Π½Ρ‹Π΅ составы Π² ΠΊΠ²Π°Π·ΠΈΠ±ΠΈΠ½Π°Ρ€Π½ΠΎΠΌ Ρ€Π°Π·Ρ€Π΅Π·Π΅ MnSe–TmSe. ΠšΡ€ΠΈΡΡ‚Π°Π»Π»ΠΈΡ‡Π΅ΡΠΊΠ°Ρ структура поликристалличСских ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² ΠΈΠ·ΡƒΡ‡Π΅Π½Π° Π² CuKΞ±-ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠΈ. УстановлСно,Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ 0 x 0,7 ΠΈΠΌΠ΅ΡŽΡ‚ ΠΊΡƒΠ±ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ структуру пространствСнной Π³Ρ€ΡƒΠΏΠΏΡ‹ Fm m3 . ИзмСнСниС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΊΠ°Ρ‚ΠΈΠΎΠ½ΠΎΠ² Tm Π² составах Mn1–xTmxSe ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° a элСмСнтарной кристалличСской ячСйки ΠΎΡ‚ 0,547 Π½ΠΌ для состава Mn0,975Tm0,025Se Π΄ΠΎ 0,566 Π½ΠΌ Ρƒ состава Mn0,3Tm0,7Se. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Β«flashΒ» Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ°Ρ… оптичСски ΠΏΡ€ΠΎΠ·Ρ€Π°Ρ‡Π½ΠΎΠ³ΠΎ стСкла синтСзированы Ρ‚ΠΎΠ½ΠΊΠΈΠ΅ слои Ρ‚Π²Π΅Ρ€Π΄Ρ‹Ρ… растворов Mn1–xTmxSe. Π’ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ ΠΏΠ»Π΅Π½ΠΎΠΊ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΎΡ‚ 0,8 Π΄ΠΎ 3,2 ΠΌΠΊΠΌ. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΠ»Π΅Π½ΠΊΠΈ Mn1–xTmxSe Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ синго-Π½ΠΈΠ΅ΠΉ NaCl, S.G.: Fm m3 . Бостав ΠΏΠ»Π΅Π½ΠΎΠΊ Mn1–xTmxSe соотвСтствуСт химичСскому составу ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² ΡˆΠΈΡ…Ρ‚Ρ‹ MnSe–TmSe. Π’ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ ~ 80–900 К ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½Ρ‹ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ намагничСнности ΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ восприимчивости исслСдуСмых сСлСнидов. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Π΅ Ρ€Π΅ΠΆΠΈΠΌΡ‹ синтСза Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… вСщСств, Π² Ρ‚ΠΎΠΌ числС Π² ΠΏΠ»Π΅Π½ΠΎΡ‡Π½ΠΎΠΌ состоянии. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ вСщСства ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² устройствах микроэлСктроники ΠΌΠ½ΠΎΠ³ΠΎΡ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ назначСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², способных Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Π² ΡˆΠΈΡ€ΠΎΠΊΠΈΡ… ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°Ρ… Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ ΠΈ ΠΏΡ€ΠΈ воздСйствии Π²Π½Π΅ΡˆΠ½ΠΈΡ… ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ

    ΠœΠΠ“ΠΠ˜Π’ΠžΠ‘ΠžΠŸΠ ΠžΠ’Π˜Π’Π›Π•ΠΠ˜Π• И Π­Π€Π€Π•ΠšΠ’ Π₯ΠžΠ›Π›Π Π’ Π’Π’Π•Π Π”ΠžΠœ Π ΠΠ‘Π’Π’ΠžΠ Π• Mn0,55V0,45S

    Get PDF
    In the 80-300 K temperature range and magnetic fields with induction of up to 2.1 T are studied the characteristics of magnetoresistive properties and Hall effect of Mn0,55V0,45S solid solution. It was found that the Mn0,55V0,45S composition is a semiconductor with high p-type carrier concentration and low values of their mobility; a magnetoresistive effect is observed; solid solution has a noncollinear antiferromagnetic structure at temperatures ranges T < TN = 130 K; in the vicinity of the temperature T ~ 180 K in Mn0,55V0,45S there is a phase transition of semiconductor-semimetal type due to delocalization of charge carriers and the formation of micro areas with ferromagnetic ordering in an antiferromagnetic matrix. Magnetoresistive effect in this case, most likely is due to the magnetic inhomogeneity and can be interpreted in the framework of the electronic and magnetic phase separation consistent with the theory of current flow in heavily doped semiconductors.Π’ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ 80-300 К ΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… полях с ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠ΅ΠΉ Π΄ΠΎ 2,1 Π’Π» ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ особСнности магнито¬рСзистивных свойств ΠΈ эффСкта Π₯ΠΎΠ»Π»Π° Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ раствора Mn0,55V0,45S. УстановлСно, Ρ‡Ρ‚ΠΎ состав Mn0,55V0,45S являСтся ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠΌ с высокими значСниями ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ носитСлСй заряда Ρ€-Ρ‚ΠΈΠΏΠ° ΠΈ Π½ΠΈΠ·ΠΊΠΈΠΌΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ ΠΈΡ… подвиТности; ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ магниторСзистивным эффСктом; ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π΅ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½ΡƒΡŽ Π°Π½Ρ‚ΠΈΡ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½ΡƒΡŽ структуру Π² области Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Π’ < Π’N = 130 К; Π² окрСстности Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π’ ~ 180 К Π² Mn0 55V0 45S ΠΈΠΌΠ΅Π΅Ρ‚ мСсто Ρ„Π°Π·ΠΎΠ²ΠΎΠ΅ ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚ΠΈΠΏΠ° ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ-ΠΏΠΎΠ»ΡƒΠΌΠ΅Ρ‚Π°Π»Π», обусловлСнноС Π΄Π΅Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ носитСлСй заряда ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ микрообластСй с Ρ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹ΠΌ упорядочСниСм Π² Π°Π½Ρ‚ΠΈΡ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅. ΠœΠ°Π³Π½ΠΈΡ‚ΠΎΡ€Π΅Π·ΠΈΡΡ‚ΠΈΠ²Π½Ρ‹ΠΉ эффСкт Π² этом случаС, вСроятнСС всСго, обусловлСн ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΌΠΎΠ΄Π΅Π»ΠΈ элСктронного ΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ раздСлСния Ρ„Π°Π·, ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‰Π΅ΠΉΡΡ с Ρ‚Π΅ΠΎΡ€ΠΈΠ΅ΠΉ протСкания Ρ‚ΠΎΠΊΠ° Π² сильно Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ…

    SYNTHESIS AND OPTICAL PROPERTIES OF Ni-DOPED ZnO GROWN BY ELECTROCHEMICAL DEPOSITION

    Get PDF
    This paper is targeted at studying the patterns of deposition by electrochemical method of Ni-doped ZnO films, including registering and analyzing their photoluminescence and Raman scattering spectra. We have studied the electrochemical deposition of nickel-doped zinc oxide films on single-crystal silicon substrates from aqueous solutions of zinc and nickel nitrates. The deposition was conducted from aqua solutions of Zn and Ni nitrates in a standard double-electrode electrochemical cell in galvanostatic mode with the current density from 5 to 20 mA/cm2 and deposition time from 5 to 30 min. The Raman scattering on nickel-doped zinc oxide films was examined via laser Raman spectrometer SOL Instruments Confotec NR500. The analysis of Raman spectra showed that an increase of cathodic current density deposition leads to an enhanced concentration of a doping agent in the films. Photoluminescence spectra of the samples were registered on a laser spectral measuring system based on monochromator-spectrograph SOLAR TII MS 7504i where a monochromatic line with the 345-nm wavelength, which was extracted from the spectrum of Xe-lamp by means of double monochromator Solar TII DM160, was used as the excitation source. The research demonstrates that the emmission intensity increases with the thickness of the deposited film, and the position of maximums of the radiation line remains unchanged in a visible wavelength range and on photoluminescence spectra with fixed current density. The change in the density of the cathode current leads to a shift in the position of the photoluminescence spectra maximum, which indicates restructuring of defects and dopant atoms in the doped semiconductor, which in turn changes the position of the corresponding levels in the band gap of the material

    Magnetic Properties of Bulk and Thin Ndβ‚‚Fe₁₄B Films after Corrosion Action

    No full text
    The corrosion action for bulk and thin Ndβ‚‚Fe₁₄B films magnets in different corrosion media was studied. The thin Nd-Fe-B films of 100 nm ≀ d ≀ 1000 nm were deposited on glass substrate by "flash" evaporation method. The structure and microstructure of the samples were studied by X-ray diffraction analysis, scanning electron microscopy. The temperature dependence of the magnetization before and after corrosion action was carried out by ponderomotive method in the temperature range 80 ≀ T ≀ 800 K. It is shown that the specific magnetizations of the thin Nd-Fe-B films with d β‰₯ 1000 nm are comparable to those measured for the powder samples. The values of the coercive and saturation fields were determined from the hysteresis loops measurements

    Crystal Structure and Magnetic Properties of Mn1βˆ’xGdxSeMn_{1-x}Gd_{x}Se Solid Solutions

    No full text
    The synthesis of polycrystalline Mn1βˆ’xGdxSeMn_{1-x}Gd_{x}Se solid solutions is carried out by solid state reaction method followed by quenching from the temperature of 1370 K. The X-ray diffraction studies realized at 300 K revealed that the structure of the single phase samples in the 0 < x < 0.15 concentration range is identified on base a face centered cubic crystal cell of Fm3m space group. The heating of the solid solutions to 900 K does not affect on the magnetic susceptibility as the dependences is identical to the measurements in the "heating-cooling" regime. Comparing the research results of magnetic properties of the Mn1βˆ’xGdxSeMn_{1-x}Gd_{x}Se solid solutions with those of Mn1βˆ’xGdxSMn_{1-x}Gd_{x}S solid solutions, we can conclude that substitution of manganese ions by gadolinium in manganese selenide lead to more changes in the basic magnetic characteristics than in manganese sulfide

    Effect of Co-Doping on Magnetic Properties of Bismuth Ferrite

    No full text
    The effect of co-doping on structure and magnetic properties of the BiFeO3-based multiferroics with a partial isovalent substitution of bismuth for La3+, Gd3+, Dy3+, and Er3+ ions have been experimentally investigated by X-ray diffraction and magnetic methods. The ceramic R1xR20.2βˆ’xBi0.8FeO3 type (x = 0, 0.05, 0.10, 0.15, 0.20; R1, R2 = La, Gd, Dy, Er) samples have been prepared by a solid-state reaction method under cold pressing at high pressure P = 4 GPa. Temperature dependences of magnetization for the co-doped BiFeO3 demonstrate magnetic β€œweak ferromagnetic–antiferromagnetic” phase transitions in a high temperature range T = 550–650 K. The presence of a weak ferromagnetism in all compositions is confirmed by open loops of magnetic field dependences. It has been found out that the magnetic characteristics strongly depend on the degree of substitution, temperature, and magnitude of magnetic field
    corecore